The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition

D. Townsend¹,², S. A. Lahankar³, S. K. Lee¹,²,³, S. D. Chambreau³, A. G. Suits¹,²,³,*
X. Zhang⁴, J. Rheinecker⁴, L. B. Harding⁵ and J. M. Bowman⁴*

¹Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
²Chemistry Department, Brookhaven National Laboratory, Upton NY 11973
³Department of Chemistry, Wayne State University, Detroit MI 48202
⁴Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322
⁵Chemistry Division, Argonne National Laboratory, Argonne IL 60439

*asuits@wayne.edu; jimbowma@emory.edu

We present a combined experimental and theoretical investigation of formaldehyde (H₂CO) dissociation to H₂ and CO at energies just above the threshold for competing H elimination. High-resolution state-resolved imaging measurements of the CO velocity distributions reveal two dissociation pathways. The first proceeds through a well-established transition state to produce rotationally excited CO and vibrationally cold H₂. The second second dissociation pathway yields rotationally cold CO in conjunction with highly vibrationally excited H₂. Quasi-classical trajectory calculations performed on a global potential energy surface for H₂CO suggest that this second channel represents an intramolecular hydrogen abstraction mechanism: one hydrogen atom explores large regions of the potential energy surface before bonding with the second H atom, by-passing the saddle point entirely.