The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition D. Townsend^{1,2}, S. A. Lahankar³, <u>S. K. Lee</u>^{1,2,3}, S. D. Chambreau³, A. G. Suits^{1,2,3}*, X. Zhang⁴, J. Rheinecker⁴, L. B. Harding⁵ and J. M. Bowman⁴* ¹Department of Chemistry, Stony Brook University, Stony Brook, NY 11794 ²Chemistry Department, Brookhaven National Laboratory, Upton NY 11973 ³Department of Chemistry, Wayne State University, Detroit MI 48202 ⁴Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322 ⁵Chemistry Division, Argonne National Laboratory, Argonne IL 60439 *asuits@wayne.edu; jimbowma@emory.edu We present a combined experimental and theoretical investigation offormaldehyde (H₂CO) dissociation to H2 and CO at energies just above the threshold forcompeting H elimination. High-resolution state-resolved imaging measurements of the CO velocity distributions reveal two dissociation pathways. The first proceeds through awell-established transition state to produce rotationally excited CO and vibrationally cold H2. The second second dissociation pathway yields rotationally cold CO in conjunctionwith highly vibrationally excited H 2. Quasi-classical trajectory calculations performed ona global potential energy surface for H 2CO suggest that this second channel represents anintramolecular hydrogen abstraction mechanism: one hydrogen atom explores large regions of the potential energy surface before bonding with the second H atom, by-passing the saddle point entirely.