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Table. 1. The number of monomers per cross-linking, Ny, and thermal expansion coefficient, «, for
hard and soft silicone rubbers and natural rubber, derived from parameter fittings.

N, al K*

Hard silicone rubber 91.7 0.0010
Soft silicone rubber 177 0.00013
Natural rubber 92.6 0.00038
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Fig. 1. Temperature response of hard silicone rubber to repeated stretching and shrinkage for a small
deformation (4 = 1.083).
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Fig. 2. Temperature response of hard silicone rubber to repeated stretching and shrinkage for a
larger deformation (4 = 1.95).
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Fig. 3. The entropy of stretching vs. stretching ratio for hard silicone rubber and the best fit
theoretical curve consisting of the isochoric entropy function and a correction term for thermal

expansivity.



