アニュアルレポート 2014

大阪大学 大学院理学研究科 高分子科学専攻

目 次	
巻頭言	1
高分子科学専攻の構成	4
研究活動概要	5
高分子合成化学研究室	6
高分子反応化学研究室	8
高分子物理化学研究室	10
高分子機能化学研究室	12
超分子科学研究室	14
高分子構造科学(高分子固体構造論)研究室	16
高分子集合体科学研究室	18
論文リスト	21
Original Papers	22
Review Articles	28
Books	28
Miscellaneous Publications	30
修士・博士論文題日と修了者の准路	33
修士論文題目	34
博士論文題目	36
平成26年度博士前期·後期課程修了者進路	37

卷頭言

「理学研究科に高分子科学あり」

大阪大学豊中キャンパスの春、キャンパス内の多くの桜は競って咲き乱れ、このキャンパ スに慣れ親しんだ多くの卒業生・修了生を華々しく送り出し、新たな希望を胸に秘めて入学 してくる学生を元気に迎えてくれます。大阪大学は今や日本一の学生数で、その学部1年生 が皆、この豊中キャンパスで勉学をスタートさせるため、とても活気があります。この賑わ いよりも1ヶ月早く、梅の花が咲く頃に、このキャンパス内では1本の桜の大木が春の訪れ を知らせてくれます。キャンパス内の郵便局近く、サイバーメディアセンターデータステー ションの屋外階段と建物のコンクリートの間のとても狭いところにあり、その樹の生命力た るやコンクリートや階段の手摺を変形させる程です。この大木からすれば周りを人工物で覆 われ、さぞストレスになっていたはずです。その桜が他の木よりも早く花を咲かせるのは、 苦境を跳ね返そうとする生命力が成せる技かもしれません。この大木、安全上の観点からと 思われますが、昨年伐採され、今はその早咲き桜を見ることはできなくなりました。人々を 元気にする源になれるよう、これからはこの樹に代わって私たちが頑張らねばと決意する次 第です。

今、文部科学省が推進している国立大学改革実行プランに基づき、本学でも様々な改革が 求められています。大阪大学創立 100 周年を迎える 2031 年には世界トップ 10 の研究総合大 学になることを目指し、グローバル化、財政基盤強化、入試改革などの取り組みが行われて います。平成 26 年度、グローバルな舞台に積極的に挑戦し活躍できる人材の育成を図るため の「スーパーグローバル大学創成支援事業」に本学が採択されました。理学研究科では、当 専攻の佐藤尚弘教授が中心となって大学院教育改革が進められ、新しい教育プログラム(高 度博士人材養成プログラム)がスタートしました。一方で、昨今、運営費交付金は削減され、 平成 25 年度から教員ポストの削減が始まっています。組織として小さな高分子科学専攻にお いては個々人が抱える仕事が増すばかりです。電気料金の値上げ等もあり、ストレスのかか る運営を強いられています。そんな時こそ、先の桜ではないですが、力強くその存在を示し、 理学研究科高分子科学発の研究成果を花開かせようじゃありませんか。

大学を取り巻く情勢が厳しい中、高分子科学専攻では嬉しいニュースがいくつかあります。 平成26年5月原田明教授が高分子科学功績賞を受賞されました。若手教員では高島義徳助教 が科学技術分野の文部科学大臣表彰若手研究者賞を受賞されました。また、当専攻より3名 の教員が大阪大学総長奨励賞を受賞しています。学生も様々な学会・シンポジウムにおいて 優秀講演賞やポスター賞を多数受賞しています。本年度博士後期課程を修了し、博士号を取 得した中畑雅樹君は日本学術振興会育志賞を受賞いたしました。また、当専攻での研究成果 が多くの新聞や広報媒体でとり上げられるなど、活発な研究活動が展開されております。し

1

ばらく病気休職されておられました高分子反応化学研究室の鬼塚清孝教授が復職され、全研 究室のスタッフが久しぶりに勢揃いしました。

平成 27 年 3 月 31 日、超分子科学研究室の原田明教授が定年退官されました。本学におい て研究をスタートした当初から高分子による分子認識(高分子認識)の重要性に注目し、世 界に先駆けた研究を推進してこられました。その結果、高分子科学と超分子科学とを融合し、 「超分子ポリマー」や「ポリロタキサン」などの新しい科学を創出されました。既に本冊子 をご覧になる多くの方々が原田先生の研究をよくご存知のことと思いますが、原田先生はグ ルコースの環状オリゴマーであるシクロデキストリン(CD)が様々なポリマーの構造を厳密 に認識して包接化合物を形成することを世界で初めて発見されました。その CD とポリマー との包接錯体におけるポリマー末端をかさ高い置換基で閉じることにより、ポリロタキサン を合成しました。さらに、ポリロタキサンからチューブ状のポリマーを合成することに成功 しています。ホストーゲスト相互作用を介して多数の分子を連結した超分子ポリマーの合成、 無溶媒下でCDとモノマーを混合・加熱して高分子を合成する新規触媒システムの構築など、 ユニークな研究を展開されました。最近では、分子が分子を見分けて結合する「分子認識」 を高分子材料の接着現象として巨視的に可視化し、さらにこのコンセプトをもとに自己修復 材料や光、媒体、酸化還元などの刺激に応答して伸縮・形状変化する超分子材料を創製する ことにも成功しておられます。これからも原田先生は革新的研究開発推進プログラム (ImPACT)等の研究プロジェクトにおいて精力的に研究展開をされることと思いますので、そ の後の展開もたいへん楽しみです。

平成26年度に当専攻の博士前期課程を修了した学生(写真)の中には、宇宙開発事業団に 就職した人もおります。本学・当専攻を卒業・修了した学生が世界に羽ばたき、宇宙を旅す る壮大な夢と希望をもってますます活躍してくれることを祈念して、私共も日々研究に精進 したいと思います。

本冊子は平成26年の各研究室の主な研究活動成果と高分子科学専攻の業績リスト、本専攻修了者の論文と進路をまとめたものです。ご一読いただき、ご意見をいただければ幸いです。

(平成 26 年度高分子科学専攻長 山口浩靖)

最新の情報は高分子科学専攻ホームページ

http://www.chem.sci.osaka-u.ac.jp/graduate/mms/index.html

や各研究室のホームページをご覧ください。

理学研究科事務室連絡先 〒560-0043 大阪府豊中市待兼山町1-1 電話:06-6850-6111 (代表) Copyright c 2010 OSAKA UNIVERSITY. All Rights Reserved.

高分子科学専攻の構成(平成26年度)

高分子合成・反応化学大講座

高分子合成	文化学研究室				
教授	青島貞人	准教授	金岡鐘局	助教	金澤有紘
高分子反応	口化学研究室				
教授	鬼塚清孝	准教授	岡村高明	助教	神林直哉

- 高分子構造・物性・機能論大講座
 - 高分子物理化学研究室 教授 井上正志 講師 浦川理 高分子機能化学研究室 教授 山口浩靖 超分子科学研究室 教授 原田明 助教 高島義徳
- 高分子凝集系科学大講座

高分子構造	皆科学(高分子固体	本構造論)	研究室		
教授	今田勝巳	准教授	金子文俊	助教	川口辰也
高分子集合	合体科学研究室				
教授	佐藤尚弘	准教授	橋爪章仁	講師	寺尾憲

○ 情報高分子大講座(蛋白質研究所)

蛋白質構造	步形成研究室				
教授	後藤祐児	講師 L	ee Young-Ho.		
蛋白質結晶	晶学研究室				
教授	栗栖源嗣	准教授	田中秀明		
超分子構造	皆解析学研究室				
教授	中川敦史	准教授	鈴木守	助教	山下栄樹

○ 安全衛生管理部

環境安全化学研究室	

教授 山本仁 准教授 富田賢吾

研究活動概要 (2014 年度)

各研究室の研究活動

高分子合成化学研究室

<スタッフ> 青島貞人(教授) 金岡鐘局(准教授) 金澤有紘(助教)

<研究のキーワード>

(1) 高分子合成 (2) リビングカチオン重合 (3) リビング重合開始剤

(4) 刺激応答性ポリマー (5) 新規開環重合 (6) ブロック・星型ポリマー

<平成26年度の主な研究活動概要>

我々はこれまで、リビングカチオン重合の新規開発およびそれらを用いた様々な刺 激応答性ポリマーの合成を検討してきた。26年度は、(1)新規カチオン重合開始剤系 の検討、(2)末端官能性ポリマー前駆体からのブロック・星型ポリマー合成法の開拓、 (3)ポリマーの切断やセグメントの分解が組み込まれたリビングポリマーの設計・合 成などを行った。

(1) 新規カチオン重合開始剤系の検討

新しいカチオン重合開始剤系の検討として、ビニルエーテル(VE)とオキシランの 共重合系の開発、モノマー選択的重合法探索、種々の配位子による重合開始剤系の検 討、Ru 化合物によるカチオン重合、環境への負荷の小さなイオン液体中のリビング 重合などを行った。例えば、最近見いだされた VE とオキシラン化合物のビニル付加・ 開環同時カチオン共重合では、種々の置換基のオキシランを用いて共重合の可能性を 検討した。その結果、開環によって生成する炭素カチオン種がより安定となる側鎖置 換基を有するオキシランを用いると、VE との交差生長反応が高頻度に起こって共重 合体が生成することが初めて見いだされた。また、環状ホルマールとして 1,3-ジオキ セパンを用い、VE との制御カチオン共重合の可能性を明らかにした。

ブロックコポリマーの新規合成法として、ドミノ法によるモノマー選択反応に続き、 含フッ素溶媒を用いた二層系での選択重合の可能性を明らかにした。有機及び含フッ 素溶媒の各層にそれぞれ別のモノマーを添加し、まず上層の有機層で第一段の重合を 開始した。次に、反応終了時点で撹拌により系を均一にし、二段目の重合を開始した。 その結果、最適条件ではブロックコポリマーが選択的に得られることがわかった。

(2) 末端官能性ポリマー前駆体からのブロック・星型ポリマー合成法の開拓

安定な末端官能性ポリマー前駆体を用いたブロック・星型ポリマーの合成法の開拓 及び生分解性を有するブロックコポリマーの精密合成が検討された。まずアセタール、 エーテル、ヒドロキシ基をポリ(VE)やポリ(St 類)の末端に有するポリマー前駆体か らの重合開始の検討を行った。この手法は多段階になるため通常のワンポット法に比 ベー見非効率に見えるが、重合条件が異なりすぎて ブロック・グラフトや星型ポリマーが合成できない 系への適用や精密シークエンス制御などが期待で きる。開始反応用の触媒系として酸素親和性が高い 金属ルイス酸と、重合進行用にハロゲン親和性が高 いルイス酸を組み合わせることにより、ブロックポ リマーが得られた。さらに、数種の方法で合成した 末端ヒドロキシ刺激応答性ポリ VE を前駆体にして

図 1. ポリ乳酸と刺激応答性 VE セグ メントからなるブロックコポリマー

ラクチドの開環重合を行い、生分解性を有するポリ乳酸セグメントを刺激応答性 VE ポリマーと組み合わせたブロックコポリマー(図1)も合成された。ポリ乳酸セグメ ントの鎖長に応じて、可逆型や不可逆型の温度応答性が見られることがわかった。

(3) ポリマーの切断やセグメントの分解が組み込まれたリビングポリマーの設計

我々はこれまで、共役アルデヒドと VE の制御 カチオン共重合で、分子量分布が狭い交互型リビ ングポリマーの合成およびそのポリマーの選択 的酸加水分解を検討してきた。今年度はこの系を 応用し、予め選択的にポリマーの切断点やセグメ ントの分解点が組み込まれたリビングポリマー の設計・合成を検討した。ホモポリマー主鎖の特 定位置に分解性ユニットを選択的に導入するこ とによりホモポリマーを1/2 や1/4 に切断する系、 ブロックコポリマーや星型ポリマーの片方のセ グメントやコア部分への分解性ユニット導入に より選択的にホモポリマーに分解される系が見 いだされた。

図 2. ポリマーの切断やセグメントの分 解が設計されたリビングポリマーの合成

<参考文献>

- 1. Kanazawa, A; Kanaoka, S.; Aoshima, S. Macromolecules 2014, 47, 6635-6644.
- 2. Kanazawa, A; Kanda, S.; Kanaoka, S.; Aoshima, S. Macromolecules 2014, 47, 8531-8540.
- 3. Kigoshi, S.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. Polym. Chem. 2015, 6, 30-34.
- 4. Kawamura, M.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. Polym. Chem. 2015, 6, in press.
- 5. Kanazawa, A.; Aoshima, S. Polym. Chem. 2015, 6, in press.
- 6. Zhou, S.; Oda, Y.; Shimojima, A.; Okubo, T.; Aoshima, S; S.-Narutaki, A. *Polym. J.* **2015**, *47*, 128–135.
- 7. Karasawa, Y.; Kimura, M.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. Polym. J. 2015, 47, 152–157.
- 8. 山中悠司, 金澤有紘, 金岡鐘局, 青島貞人 高分子論文集 2015, 72, in press.
- 9. 吉﨑友哉, 金澤有紘, 金岡鐘局, 青島貞人 高分子論文集 2015, 72, in press.

高分子反応化学研究室

<スタッフ> 鬼塚清孝(教授) 岡村高明(准教授) 神林直哉(助教)

<研究のキーワード>

- (1) 高分子錯体 (2) 錯体触媒 (3) 不斉合成 (4) アセチリド錯体
- (5)金属蛋白質 (6)酵素モデル(7)水素結合

<平成26年度の主な研究活動概要>

当研究室では、遷移金属元素を活用した高分子科学を基軸として、新しい高分子合 成反応の開拓と機能性高分子の創出に関する研究を行っている。今年度は、面不斉金 属錯体触媒を用いた光学活性高分子の合成と機能化、並びに金属酵素モデル錯体の合 成と特性についての研究を中心に検討した。

(1) 光学活性高分子の側鎖置換基の修飾及び主鎖の変換法の開発

私たちは、これまでに面不斉シクロペンタジエニルルテニウム錯体を合成し、これ を触媒とした不斉アリル位置換反応を開発し、この反応を不斉重合に応用することで、 主鎖の不斉炭素を精密に制御した光学活性高分子(1)の合成に成功している¹。1 は構 成単位に化学修飾可能な末端二重結合を有しており、光学活性高分子1の容易な分子 変換さらには機能化が期待される。本年度は、(i)閉環メタセシス反応と(ii)チオールエ ン反応を行うことで1の分子変換及び置換基修飾を行った。(i)では、構成単位にジエ ン構造を有する1aを合成し、閉環メタセシス反応を行うことで、主鎖にキラルな環 状構造を有する光学活性高分子を得た。また、(ii)では1bに対してチオールとオレフ ィンの結合形成反応であるチオールエン反応を行うことで1への様々な置換基の導入 に成功した。

(2) DMSO 還元酵素活性部位の疎水空間のモデル化と DMSO の酸素原子移動反応による還元

モリブデン酵素の1種であるジメチルスルホキシド(DMSO)還元酵素は、水溶性で あるが、活性中心は疎水的環境にあり、水素結合や基質との弱い相互作用などが安定 化されている。私たちは嵩高く疎水的な置換基を持つモノオキソモリブデン(IV)酵素 モデル錯体を合成し、トルエンのような非極性溶媒への可溶化を達成した²。オキソ 配位子を、酵素のセリン残基側鎖のアルコキソ配位を模したシロキソ配位子に変換し たところ、トルエン中で DMSO をジメチルスルフィドに還元することに成功した³。 アセトニトリルを同体積加え、極 性を高めても同等の反応性を示 した。一方、酵素の基質でもあり、 極性の高い Me₃NO では、溶媒の 極性を低くすると明らかに反応 の加速が見られた。つまり、極性 の高い基質は活性中心への接近 が溶媒の極性に依存するのに対

し、DMSOの場合は活性中心の極近傍に構築された疎水空間が基質の取り込みに重要である事を示している。類似の錯体で本研究のように温和な条件で DMSO を還元した報告例は無く、疎水空間のモデル化の重要性が示された。

(3) 分子内 NH…O 水素結合によるマグネシウム依存性ホスファターゼモデル錯体の反応 性制御

Mg²⁺イオン依存性のホスファターゼは、殆どの生物に存在し、リン酸エステルやポ リリン酸の加水分解などを行い、遺伝情報、エネルギー、重大な疾病などに関わる極 めて重要な酵素であるにも拘わらず溶液構造を議論した報告は極めて少ない。これは、 活性中心のマグネシウムーカルボキシラート結合が不安定で、極性溶媒中で容易に解 離する事に因る。私たちは、トルエンのような非極性溶媒に可溶な錯体[Mg(H₂O)₄(L)₂] (L: カルボキシラート配位子)を合成し、結合長、溶液構造、配位水の酸性度、反応性 を詳細に調べた。反応性を調節する因子として分子内 NH…O 水素結合を導入したと ころ、水素結合の様式により、結合長、配位水の酸性度、反応性が真逆の傾向を示す 事を見出した(下図)。一方、亜鉛誘導体では、その差は小さくなった⁴。即ち、酵

素中では水素結合を切り替えるだ けで反応性を大きく変化させる事 ができ、その変化量が大きい Mg^{2+} イオンを酵素が利用している事が 示された。また、錯体は非極性溶 媒中で速いシスートランス異性化 による平衡混合物として存在し、 配位子の添加により、安定なアニ オン性の *mer*-[$Mg(H_2O)_3(L)_3$]⁻を生 じる事も明らかとなった⁵。

<参考文献>

- 1. Kanbayashi, N.; Okamura, T.; Onitsuka, K. Macromolecules 2014, 47, 4178-4185.
- 2. Hasenaka, Y.; Okamura, T.; Tatsumi, M.; Inazumi, N.; Onitsuka, K. *Dalton Trans.* **2014**, *43*, 15491-15502.
- 3. Hasenaka, Y.; Okamura, T.; Onitsuka, K. Dalton Trans. 2015, 44, 6260-6267.
- 4. Okamura, T.; Furuya, R.; Onitsuka, K. J. Am. Chem. Soc. 2014, 136, 14639-14641.
- 5. Okamura, T.; Furuya, R.; Onitsuka, K. Dalton Trans. 2015, 44, 7512-7523.

高分子物理化学研究室

<スタッフ> 井上正志(教授) 浦川理(講師)

<研究のキーワード>

(1) 高分子物理化学 (2) 高分子レオロジー (3) 流動光学

(4) ソフトマター(5) 誘電緩和(6) 高密度分岐

<平成26年度の主な研究活動概要>

これまで当研究室では、粘弾性測定、流動光学、誘電緩和を用いて、高分子、超分 子、ミセル等のソフトマターの物性について検討してきた。これまでに、ポリマクロ モノマーを用いて、高分子のセグメントサイズより小さいスケールで架橋が導入され た場合について、分岐が高分子ダイナミクスに及ぶす影響を調べてきた。今年度は、 三次元高度架橋系の高分子の粘弾性セグメントに関して研究を行った。モデル高分子 系として、フェノール樹脂並びにそのプレポリマーであるノボラックを用いて、高分 子ダイナミクスに対する分岐の効果について研究を行った。

(1) ノボラック樹脂¹

フェノール樹脂は1907年にベークランドによっ て発明された最古のプラスチックであり、今なお 電子材料や自動車材料とし幅広く使用されている。 フェノール樹脂硬化物のプレポリマーであるノボ ラックは、Fig.1に示すようにその合成方法により さまざまな形態をとることが知られている。ノボ ラックはフェノール骨格に対しメチレン基が o-, o- で結合する場合、o-, p-で結合する場合、p-, p-で結合する場合の3種類があり、それぞれの連結 構造により物性が異なることが考えられるが、そ の詳細について十分にわかってはいない。そこで 本研究では、分岐構造および分子量分布の異なる ノボラック樹脂の粘弾性挙動を測定し、物性と構 造の関係について検討した。

連結構造については NMR で、分子量分布、分 岐の程度については、固有粘度測定装置付き GPC を用いて調べた。複素ずり弾性率 G*の測定結果の 一例として、ハイオルソノボラックの結果をFigure 2 に示す。基準温度は 85℃である。分子量が低い ため、通常のガラス形成物質の G*とあまり大きく 変わらない。低周波数域で、高分子性由来の弱い 緩和が認められる。より詳細に検討するために、 動的複屈折測定を行い、鎖の配向緩和モードとガ ラスモードに分離した。この結果を Fig.2 に合わせ

Figure 1. Structure of novolac resins.

Figure 2. Viscoelatic spectra for a novolac resin.

て示す。直鎖に比べて、配向緩和モードの緩和時間分布が狭くなっていることがわかる。これは分岐構造による運動モードの縮退に対応している。分岐構造の違いにより 配向緩和モードの緩和時間分布が変わることがわかった。一方、o-,o-等の連結構造の 違いによる運動モードの有意の差は観測できなかった。低分子量の分岐高分子の配向 緩和モードを詳細に検討するためには、ガラス成分の寄与を除く必要があり、今回の 研究が始めてである。

(2) フェノール樹脂²

フェノール樹脂は、耐熱性や力学特性の向上 のために、高度の架橋が導入されることが一般 的である。直鎖状高分子のダイナミクスは、鎖 を粗視化したモデル(例えば Rouse モデルなど) を利用して理論化される。粗視化可能な最小の 運動単位を、粘弾性セグメントと呼ぶ。しかし ながら、高度に架橋・分岐が導入された場合、 粘弾性セグメントサイズより小さいスケールで 分岐が存在するようになり、このような系では 粗視化の方法が使えなくなる。このように高度 に架橋が導入された系では、その粘弾性やダイ ナミクスの記述は未解決の問題であり、また理 論化の指針となる実験的研究がない。高分子性 ダイナミクスの起源となるセグメントの振る舞 いを調べるためには、動的複屈折の測定が有効 である。

架橋度を変えたフェノール樹脂を合成し、複素ヤング率 E*と複素ひずみ光学係数 O*を測定した。その結果を Fig. 3 に示す。いずれの試料においても、E*に緩和が認められ、ガラス転移領域に対応している。低周波数域の平坦部は、いわゆるゴム状平坦部に相当するが、その平坦

Fig. 3. Viscoelastic properties and Birefringence of Phenolic resins. The amount of cure agent is (a)1.6 and (b) 6.0wt %.

弾性率から求められる架橋点間分子量はセグメントサイズより小さく、ゴム弾性論は 破綻している。二つのグラフの比較から、密に架橋を導入した場合、粘弾性スペクト ルにはほとんど差異が認められず、粘弾性が架橋に関して鈍感であることがわかる。 一方、**O***には明確な差異が認められ、分岐の導入とともに配向緩和が顕著に抑制され ていることがわかる。ゴム状平坦部から求められる応力光学係数は架橋度に依存し、 セグメントの概念が破綻していることを裏付けている。

フェノール樹脂のプレポリマーでは、中心部に高度の架橋を持つ場合があり、簡単 には極中心部に数%程度の非緩和性のガラスを持つ微粒子と見なせる。フェノール樹 脂はこれをさらに架橋したものであり、ゴム状平坦部の高い弾性率はこの非緩和性の ガラス由来であると考えれば、上述の実験的特徴を説明することができる。 <参考文献>

- 1. Maji, S.; Urakawa, O.; Inoue, T. Polym. J. 2014, 46, 584.
- 2. Maji, S.; Urakawa, O.; Inoue, T. *Polym. J.* **2014,** 46, 272.

高分子機能化学研究室

< ス タ ッ フ > 山 口 浩 靖 (教 授)

<研究のキーワード>

(1)	生体高分子	(2)	モノクローナル抗体	(3)	センシング
(4)	特異性	(5)	触媒	(6)	非共有結合

<平成26年度の主な研究活動概要>

タンパク質と補因子分子をそれぞれ別の合成高分子に固定し、これらの高分子材料 を接触させたり離したりすることで、その触媒活性がオン/オフスイッチングできる 触媒システムを開発した。また、ストレスの指標となる副腎皮質ホルモンの一種、コ ルチゾールに結合するモノクローナル抗体を作製し、ストレスセンシングの定量化の ための素子開発を行なった。

(1) アポタンパク質導入ゲルと補因子固定ゲルとの接着現象と触媒活性制御

ヘム酵素の一つである西洋わさびペルオキシダーゼ(HRP)から補因子(FePor)¹を抜 き出したアポタンパク質(apoHRP)と FePor をそれぞれポリアクリルアミドゲル

(PAAm ゲル)に導入した。apoHRP ゲルと FePor ゲ ル²を4 ℃ で接触させたところ、ゲルが接着した。 種々の比較実験より、これらのゲルの接着が apoHRP と FePor の錯体形成に基づいていることが 示唆された。apoHRP ゲルと FePor ゲル存在下、HRP の基質となる 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) (ABTS)の酸化反応を観察した。 apoHRP ゲルと FePor ゲルを接着させると ABTS の 酸化反応速度が加速された(図 1)。これに対し、 apoHRP ゲルと PAAm ゲル、PAAm ゲルと FePor ゲ ルの組み合わせではこのような酸化反応は起こら なかった。ABTS の酸化反応速度は apoHRP 及び FePor のゲルの導入量および2種ゲルの接触面積に ける基質 ABTS の酸化反応

図 1. 過酸化水素存在下で apoHRP ゲ ルと FePor ゲルを接触させたとき(■)、 および比較サンプル (◆、•、×) にお

図2. apoHRPとFePorをそれぞれ固定したポリアクリルアミドゲルを接触させると触媒反応が開始 し、これらのゲルを離すと触媒反応が停止するシステム

比例することがわかった。apoHRP ゲルと FePor ゲルを接着させると ABTS の酸化反応が加速され、2種ゲルを離すと反応が進行しなくなった。2種類のゲルの接着一解離によって触媒反応を制御できることがわかった³。

(2) ストレス物質を特異的にセンシングするための素子開発

生体系の免疫システムを利用した機能性高分子の創製を 目的に、人体がストレスを感じたときに存在量が多くなる物 質を高感度で特異的に捕捉し、その存在を可視化・定量化す るためのセンシング素子開発を行なった。ストレスの度合を 測るための指標としてコルチゾール(図3)を選択した。コ ルチゾール(副腎皮質ホルモンの一種)は糖やタンパク質の 代謝や免疫機構に関与する生命維持に不可欠なホルモンで

図3. コルチゾール

ある。過度なストレスを受けると、コルチゾールの量が、血液のほか唾液や尿中でも 増加し、その反応はとても敏感であるため、このコルチゾールを定量化できるシステ ムを構築することにより、簡便なストレス計測が可能になると考えた。このコルチゾ ールを特異的に結合する素子としてモノクローナル抗体を作製した。

コルチゾール誘導体1および2(図4(a)、(b)中の各化合物)をそれぞれキャリアタ ンパク質に導入して抗原を調製し、それぞれをマウスに免疫した。2週間間隔で4回 あるいは5回免疫した後のマウスの血中にコルチゾールに結合する抗体があるか否か を酵素標識抗体測定法により観測した。その結果、1と2の両者において、マウス体 内で目的の抗体が十分に産生されていることがわかった(図4)。それぞれの免疫マ ウスから脾臓細胞(抗体を作る細胞)を摘出し、これを骨髄腫細胞と融合することで、 半永久的に増殖する抗体産生細胞を得た。これらの細胞の中から、コルチゾールに特 異的に結合する抗体を作る細胞を選別し、それぞれの免疫系からモノクローナル抗体 を複数種得ることができた。

図4. コルチゾール誘導体(1あるいは2)を免疫したマウスの血液を用いた酵素標識抗体測定の結果. 横軸はマウス血液の希釈倍率で、縦軸はコルチゾールに結合する抗体の量あるいは結合力に比例する 数値である. 各グラフの●が免疫マウス、○が非免疫マウスの血液。●はコルチゾール以外にも非特異的 に吸着する抗体の量を示す比較サンプルデータ.

<参考文献>

- 1. Kobayashi, Y.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Sci. Rep. 2013, *3*, 1243.
- 2. 山口浩靖 高分子 2014, 63, 43-44.
- 3. Kobayashi, Y.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. submitted.

超分子科学研究室

<スタッフ> 原田明(教授) 高島義徳(助教)

<研究のキーワード>

(1) 超分子 (2) 巨視的自己組織化(3) 自己修復(4) 超分子触媒

(5) ホスト-ゲスト相互作用(6) ヒドロゲル

<平成26年度の主な研究活動概要>

当研究室では非共有結合の可逆的な結合の特性を利用して,様々な超分子を合成してきた。非共有結合を形成する代表的なホスト分子としてシクロデキストリン(CD)を選択し、ホスト-ゲスト相互作用を利用した超分子ポリマーの作成や超分子ゲルを 作製し、その機能解明を行ってきた。平成26年度は超分子ゲルの接触界面での錯形 成を利用した接着や超分子ゲルの自己修復性、異種材料間での接着などを検討した¹。

(1) 金属イオンに応答して、分子認識に基づく選択的接着能を発現するゲル

CD を含有する材料が示す化学選択的な接着特性を別の独立した化学刺激により制御することで、特定の条件下でのみ接着するスマートマテリアルの開発を目指した。

本研究では、接着を制御する化学刺激とし て金属イオンに着目した。具体的には、接着 に関与する CD の分子認識能を制御するため、 CD の内孔に取り込まれて機能を阻害するビ ピリジル (bpy) を材料内に共に導入した高分 子ヒドロゲル (CD-bpy gel) を作製し、金属イ オンと bpy の反応を利用して接着を制御する ことに成功した (図1)²。

(2) ホスト-ゲスト相互作用とイオン性相互作 用を利用した酸化還元応答性ゲル集積システム

ホスト-ゲスト相互作用・イオン性相互作用 を利用し、各相互作用部位を修飾したヒドロ ゲルを用いて配列の制御された巨視的集合体 の形成を試みた。β-シクロデキストリン (βCD)、フェロセン (Fc)、スチレンスルホン酸 ナトリウム (SSNa) 部位を有するゲルを作製 した。Fc が還元状態では、Fc ゲルは βCD ゲ **図1.** 金属イオンに応答して接着が制御される選 択的接着システム.

ルとのみホスト-ゲスト相互作用を通して選択的に接着した。一方で、フェロセンを 酸化すると、Fc⁺ ゲルは SSNa ゲルとのみイオン性相互作用を通して選択的に接着し た³(図 2)。これらの三種類のゲルと二種類の相互作用を用いて、A-B-C タイプの配 列制御された自己組織化体の作製に成功した。

(3) ボロン酸-カテコール相互作用を利用した pH・糖応答性ゲル集積システム

ボロン酸-カテコールの可逆的な相互作用を利 用し、各相互作用部位を修飾したヒドロゲルを用 いて、pH や単糖に依存したゲル接着のスイッチ ングを行った(図 3)。ポリアクリルアミドゲル の側鎖にフェニルボロン酸(PB)とカテコール (CAT)部位を修飾したゲルはpH 10でのみ接着し たが、pH 4 では解離した。さらに、競争分子であ るフルクトースを添加すると解離し、pH・糖とい った外部刺激に応答する接着システムの構築に成 功した⁴。

(4) 分子認識を用いたゲスト分子修飾ガラス基板と 超分子ヒドロゲルの接着

ゲルーゲルソフト界面での分子認識による接着 から、硬質材料-ゲル間での接着及び、接着のスイ ッチングについて検討した。

アゾベンゼン (Azo)またはフェロセン (Fc) を修飾したガラス基板は CD の種類に応じてゲル と接着した。さらに光刺激や酸化還元刺激に応じ て接着性が制御できることが明らかと成った⁵ (図 4)。

(5) カップリング反応による材料の直接的な接合

これまでの非共有結合による接着から、より強 固にかつ安定に接着が期待される共有結合による 材料同士の直接接着を目指した。(図 5)。特に異 種材料間の接着として、カップリング反応に対応 する官能基をガラス基板とヒドロゲルに導入する ことで、接着に成功した。このような材料間の直 接接着は従来の接着剤を用いた接着とは全く異な る機構であり、安定性や接着力のつよさが注目さ れている。

く参考文献>

- 1. Harada, A.; Takashima, Y.; Nakahata, M. Acc. Chem. Res. 2014, 47, 2128–2140.
- Nakamura, T.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. *Nat. Commun.* 2014, *5*, 4622. (DOI: 10.1038/ncomms5622)
- 3. Nakahata, M.; Takashima, Y.; Harada, A. Angew. Chem. Int. Ed. 2014, 53, 3617-3621.
- 4. Nakahata, M.; Mori, S.;Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. ACS Macro Lett. 2014, *3*, 337-340.
- 5. Takashima, Y.; Sahara, T.; Sekine, T.; Kakuta, T.; Nakahata, M.; Otsubo, M.: Kobayashi, Y.; Harada, A. *Macromol. Rapid Commun.* **2014**, *35*, 1646-1652.
- 6. Sekine, T.; Kakuta, T.; Nakamura, T.; Kobayashi, Y.; Takashima, Y.; Harada, A. Sci. Rep. 2014, 4, 6438.

図3. pHと糖に応答するボロン酸修飾ゲル とカテコール修飾ゲルの集積体形成の概念図.

図4. アゾベンゼン修飾基板とαCD gel と の接着における光照射応答性.

図5. ボロン酸を有するガラス基板 (PB-Sub) とヨウ素を有するヒドロゲル (I-gel)のカップリング反応を利用した接着.

高分子構造科学(高分子固体構造論)研究室

<スタッフ> 今田勝巳(教授) 金子文俊(准教授) 川口辰也(助教)

<研究のキーワード>

(1) 生体高分子複合体	(2)超分子機械	(3) 細菌べん毛
(4) 分泌輸送装置	(5) 構造解析	(6)包接化合物

<平成26年度の主な研究活動概要>

当研究室では、べん毛システムや蛋白質分泌装置の構造解析を中心に生体高分子でで きた分子機械の作動原理の研究を行っている。また、合成高分子と低分子の複合体構 造と物性について主にX線および中性子回折と赤外分光法により研究している。

(1) 細菌べん毛モーターが固定子蛋白質の構造変化により活性化するしくみを解明

べん毛モーターの固定子ユニットは、回転中の モーターに組込まれたり外れたりして交換される が、モーターに組込まれたときにだけペプチドグ リカン層に結合してイオンを流し、トルクを発生 する。我々は、海洋性ビブリオ菌のナトリウム駆 動型べん毛モーターの固定子蛋白質 PomB のペプ チドグリカン結合ドメイン (PomBc) の構造解析と 細胞内でジスルフィド架橋実験から、PomBc の N 末側で固定子の一部が伸び上がるような構造変 化が起きて細胞壁に結合すること、この構造変化 は可逆的であること(すなわち伸び縮みするこ と)を示した。また、架橋が固定子のモーターへ の組込みとイオン透過に影響しないことから、細 胞壁へ結合する構造変化は固定子のモーターへ の組込みとイオン透過が起きた後に起こること がわかり、べん毛モーターの活性化の順序を明ら かにした」。

Fig. 1 PomBc の分子構造 (A) 赤矢印で 示した部分の間を架橋でつなぎ、構造変 化を妨げた。(B)架橋したアミノ酸のペ ア。青線間の残基を架橋してもモーター は機能するが、赤線間の残基を架橋する とモーターは機能しなくなる。オレンジ 線間の残基どうしは一部に架橋がかか り、一部のモーター機能が失われた。点 線の残基どうしは架橋がかからず、モー ターは機能した。

Fig.2 モーターへの組込みに伴う 固定子の構造変化のイラスト図。 固定子がモーターに組込まれる と、PomBc部分が立ち上がるような 構造変化を起こし、細胞壁に結合 する。モーターから外れていると きはしゃがんだような構造にな り、細胞壁に届かないため、細胞 壁に結合せずに細胞膜上を自由に 移動する。

(2) 高基質特異性アミノ酸酸化酵素 LysOX の

基質認識機構

通常のアミノ酸酸化酵素と異なり、リシン酸 化酵素は基質特異性が非常に高い。その理由を 解明するため、リシン酸化酵素をゲル中で結晶 化することにより強化した結晶を基質を含む 溶液に浸漬することで複合体結晶を作成し、基 質を結合状態の構造を1.7Å分解能で解析した。 その結果、Asp212側鎖、水分子を介したAsp315、 Ala440のカルボニル酸素がL-リシンの側鎖の 認識を行っていることが分かった。また、基質 を結合していないときの構造²との比較から、 Trp371はL-Lysの側鎖を活性部位に固定する 役割を持つと推察された。

Fig.3 LysOX の基質結合部位の構造

(3) 20 種類の YFP 挿入変異体の構造と蛍光特性の関係

蛍光タンパク質に変異を導入して作られ た分子センサーは、現代の医学・生物学研 究に不可欠なツールとなり、広く用いられ ているが、黄色の蛍光を発する YFP の N144 の後に1残基挿入すると、蛍光特性が著し く変化する。そこで、挿入による蛍光特性 変化の機構を解明するため、20種類のアミ ノ酸の挿入変異体を作成し、全ての結晶構 造と結晶状態での蛍光スペクトルを測定し た。その結果、発色団近傍の空隙の大きさ が蛍光のスペクトルシフトと密接な関係が あることがわかった。

Fig.4 発色団とβ7の原子の球モデル表示 スペクトルシフトの大きかった変異体と、標 準的なブルーシフトを示す YFP-E のβ7 を示 す。各原子はファンデルワールス半径に基づ いて表示している。変異体名の下にシフトの 大きさを示す。

<参考文献>

- 1. Zhu, et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 13523-13528.
- 2. Amano, et al., J. Biochem. 2015, in press.

高分子集合体科学研究室

<スタッフ> 佐藤尚弘(教授) 橋爪章仁(准教授) 寺尾憲(講師)

<研究のキーワード>

(1)アイオノマー
 (2)コロイド安定性
 (3)感熱応答性高分子
 (4)相挙
 動
 (5)コラーゲンモデルペプチド
 (6)高分子電解質コンプレックス

<平成26年度の主な研究活動概要>

当研究室では、溶液中で様々な分子内・分子間の相互作用を有する高分子の合成と 分子形態解析、それらの高分子が溶液中で形成する種々の高分子集合体の構造とその 形成機構、さらには集合体の溶液物性や機能について研究している。平成26年度は、 以下の研究を行った:(1)親水化ポリ(ジメチルシロキサン)の溶解状態;(2) フマルアミド/N-イソプロピルアクリルアミド共重合体の水溶液の相挙動;(3)三 重らせんペプチドの分子形態の温度変化と高分子電解質との複合体形成。

(1) 親水化ポリ(ジメチルシロキサン)の溶解状態

疎水性高分子に少量のイオン性置換基を導入したランダム共重合体は、アイオノマ ーと呼ばれ、古くから研究が行われ、近年燃料電池膜として注目されているフッ素ポ リマーに電解質基を導入したナフィオンなど応用上重要であるが、その強い両親媒性 のために溶液中で形成される高分子集合体については、いまだ十分な理解が得られて いなかった。我々は、一部の側鎖に4級アンモニウム基を導入した親水化ポリ(ジメ チルシロキサン)の水-メタノール混合物中での集合状態を、光散乱および小角 X 線 散乱により調べ、高分子集合体の構造やその形成機構について考察した。

この親水化ポリ(ジメチルシロキサン)試料を 0.1 M 酢酸ナトリウム含有水-メタ ノール混合物と混ぜて 1%未満の濃度の溶液を調製すると、溶液はほぼ透明であった が、水-メタノール混合物中の水の重量分率が 0.5 以上では、相分離していた。この 3 成分系の相図は、図1に示すように、高分子+溶媒(メタノール)+非溶媒(水)

の系に期待される相図であった。2相領域 にある溶液中で、濃厚相は回転半径が100 ~300 nm 程度のコロイド粒子として存在す るが、時間が経つとゆっくりと凝集が起こ り、溶液調製後数日が経過すると溶液は濁 ってきた。2相領域にある高分子溶液系が、 溶液調製直後にはコロイド分散状態にある のは、この親水化ポリ(ジメチルシロキサ ン)の乾燥試料が、水ーメタノール混合物 と混ぜる前に、電解質基が凝集したマルチ プレット構造をとり、溶解時にはそのマル チプレットが膨潤してコロイドが形成され たと考えられる。

図1. 高分子+溶媒+非溶媒系の相図

(2) フマルアミド/N-イソプロピルアクリルアミド共重合体の水溶液の相挙動

先にわれわれは、感熱応答性高分子における側鎖密度の効果を明らかにするため、 N,N'-ジイソプロピルフマルアミド (DIPFAM) をコモノマーとする N-イソプロピルア クリルアミド (NIPAM) 共重合体を調製し、その水溶液の相挙動を調査した。その結 果、DIPFAM 含量、すなわち N-イソプロピルアミド側鎖の密度の増加とともに、相 転移温度は低下し、高分子鎖への水和がより不安定になることを明らかにした。

本研究では、NIPAM 共重合体中の FAM 誘導体の置換基効果を調べるために、フマルアミド (FAM) をコモノマーとした NIPAM 共重合体の水溶液の相挙動を、透過率測定、IR 測定、および DSC によって調査した。FAM 含量 (x_F) の増加とともに、曇点温度 (T_{cloud}) と澄明点温度 (T_{clear}) は上昇し、FAM ユニットは FAM/NIPAM 共重合体の親水性を向上させた。この結果は、

DIPAM/NIPAM 共重合体の結果と対照的で あった。IR 測定と DSC 測定の結果から、 FAM/NIPAM 共重合体は、PNIPAM の場合 と同様に、*T*_{cloud}付近で協同的な脱水和、*T*_{clear} 付近で協同的な再水和が起こっていること がわかった。また、*x*_Fの増加に伴って相分 離の協同性が低下することも明らかとなっ た。これは、FAM/NIPAM 共重合体の組成 分布が原因であると考えられる。

図 2. FAM/NIPAM コポリマーの構造

(3) 三重らせんペプチドの分子形態の温度変化と高分子電解質との複合体形成

片末端を高い熱安定性を持つ結合ド メインで固定化したコラーゲンペプチ ドが、水溶液中、三重らせんの融解温 度近傍で温度の上昇と共に棒状鎖から 星形鎖に形態を変化することを、放射 光小角 X 線散乱法で明らかにした。星 形鎖の広がりは、変性ペプチドの広が りから予測されるものよりも有意に大 きく、結合ドメインとの相互作用によ って鎖が広がっていることがわかった。

図 3. 水溶液中におけるペプチドの転移挙動

他方、三重らせんペプチドと高分子電解質の一種であるカルボキシメチルアミロー スが、静電相互作用により複合体を形成することを明らかにした。さらに、その複合 体のモル質量が三重らせんの融解温度付近で急激に減少し、完全に一本鎖となる高温 領域では分子分散すること、すなわち三重らせん構造が複合体形成に重要な役割を果 たすことを示した。

<参考文献>

- 1. Okuhara, T.; Hashidzume, A.; Terao, K.; Sato, T. Polym. J. 2014, 46, 264–271.
- 2. 石井直子, 松元亜紀子, 橋爪章仁, 佐藤尚弘, 高分子論文集 2014, 71, 361-366.
- 3. Terao, K.; Mizuno, K.; Bächinger, H. P. J. Phys. Chem. B 2015, 119, 3714-3719.
- 4. Terao, K.; Kanenaga, R.; Yoshida, T.; Mizuno, K.; et al. Polymer 2015, 64, 8-13.

論文リスト (2014 年分)

Original Papers

- O-1 Efficient Design for Stimuli-Responsive Polymers with Quantitative Acid-Degradability: Specifically Designed Alternating Controlled Cationic Copolymerization and Facile Complete Degradation Aoshima, S.; Oda, Y.; Matsumoto, S.; Shinke, Y.; Kanazawa, A.; Kanaoka, S. ACS Macro Lett. 2014, 3, 80-85.
- O-2 Chemically Recyclable Alternating Copolymers with Low Polydispersity from Conjugated/Aromatic Aldehydes with Vinyl Ethers: Selective Degradation to Another Monomer at Ambient Temperature Ishido, Y.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. *Polym. Chem.* 2014, *5*, 43-47.
- Design of Benign Initiator for Living Cationic Polymerization of Vinyl Ethers: Facile in Situ Generation of Vinyl Ether-Hydrogen Halide Adducts and Subsequent Controlled Polymerization without a Lewis Acid Catalyst Kanazawa, A.; Hashizume, R.; Kanaoka, S.; Aoshima, S. *Macromolecules* 2014, 47, 1578-1585.
- O-4 Rational Design of Oxirane Monomers for Efficient Crossover Reactions in Concurrent Cationic Vinyl-Addition and Ring-Opening Copolymerization with Vinyl Ethers

Kanazawa, A.; Kanaoka, S.; Aoshima, S. *Macromolecules* **2014**, *47*, 6635-6644.

- O-5 Alkoxyoxirane, a Unique Cyclic Monomer: Controlled Cationic Homopolymerization Mediated by Long-Lived Species and Copolymerization with Vinyl Ether via Alkoxy Group Transfer Kanazawa, A.; Kanaoka, S.; Aoshima, S.
 Macromolecules 2014, 47, 8531-8540.
- O-6 An Effect of Side-Chain Carbonyl Groups on the Interface of Vinyl Polymers with Water

Oda, Y.; Horinouchi, A.; Kawaguchi, D.; Matsuno, H.; Kanaoka, S.; Aoshima, S.; Tanaka, K. *Langmuir* **2014**, *30*, 1215-1219.

- O-7 Size-Controlled Preparation of Gold Nanoclusters Stabilized by High Viscosity Hydrophilic Polymers Using a Microflow Reactor Haesuwannakij, K.; Karuehanon, W.; Mishra, V. L.; Kitahara, H.; Sakurai, H.; Kanaoka, S.; Aoshima, S. *Monatshefte fur Chemie Chemical Monthly* 2014, 145, 23-28.
- O-8 Controlled Cationic Alternating Copolymerization of Various Enol Ethers and Benzaldehyde Derivatives: Effects of Enol Ether Structures Ishido, Y.; Kanazawa, A.; Kanaoka, S.; Aoshima, S.
 J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1334-1343.
- O-9 Structural Modulation of Silver Complexes and Their Distinctive Catalytic Properties

Zhao, Y.; Chen, K.; Fan, J.; Okamura, T.; Lu, Y.; Luo, L.; Sun, W.-Y. *Dalton Trans.* **2014**, *43*, 2252-2258.

- O-10 A Series of Divalent Metal Complexes with Mixed 5-(Imidazol-1-ylmethyl)isophthalic Acid and N-Donor Ligands: Synthesis, Characterization and Property Kuai, H.-W.; Okamura, T.; Sun, W.-Y. *Polyhedron* 2014, 72, 8-18.
- O-11 Zinc(II) and Cadmium(II) Metal-Organic Frameworks with 4-Imidazole Containing Tripodal Ligand: Sorption and Anion Exchange Properties Chen, S.-S.; Wang, P.; Takamizawa, S.; Okamura, T.; Chen, M.; Sun, W.-Y. *Dalton Trans.* 2014, 43, 6012-6020.
- O-12 New Method for Asymmetric Polymerization: Asymmetric Allylic Substitution Catalyzed by a Planar-Chiral Ruthenium Complex Kanbayashi, N.; Okamura, T.; Onitsuka, K. *Macromolecules* 2014, 47, 4178-4185.
- O-13 Regulation of the Hydrolytic Activity of Mg²⁺-Dependent Phosphatase Models by Intramolecular NH•••O Hydrogen Bonds Okamura, T.; Furuya, R.; Onitsuka, K.

J. Am. Chem. Soc. 2014, 136, 14639-14641.

- O-14 Behavior of Anionic Molybdenum(IV, VI) and Tungsten(IV, VI) Complexes Containing Bulky Hydrophobic Dithiolate Ligands and Intramolecular NH•••S Hydrogen Bonds in Nonpolar Solvents Hasenaka, Y.; Okamura, T.; Tatsumi, M.; Inazumi, N.; Onitsuka, K. Dalton Trans. 2014, 43, 15491-15502.
- O-15 Detailed Analysis of Sub-Rouse Mode Observed in Polymerized Ionic Liquid with Dynmiac Birefrigence Measurements
 Matsumoto, A.; Inoue, T.
 Nihon Reoroji Gakkaishi 2014, 42, 227-233.
- Dielectric and Viscoelastic Behavior of Star-branced Polyisoprene: Two Coarse-Grained Length Scales in Dynamic Tube Dilation Matsumiya, Y.; Masubuchi, Y.; Inoue, T.; Urakawa, O.; Liu, C.-Y.; Ruymbeke, E.; Watanabe, H.
 Macromolecules 2014, 47, 7637-7652.
- O-17 Viscoelastic Properties and Birefringence of Phenolic Resins Maji, S.; Urakawa, O.; Inoue, T.
 Polym. J. 2014, 46, 272-276.
- O-18 Structure and Viscoelasticity of Novolac Resins Maji, S.; Urakawa, O.; Inoue, T. *Polym. J.* 2014, *46*, 584-591.
- O-19 Dynamical Rigidity of Cellulose Derivatives in Melts Maeda, A.; Inoue, T.; Yamaguchi, M *Polym. J.* 2014, 46, 149-154.
- O-20 Dynamics of Polar Low Mass Molecules Encapsulated in the Delta-Cocrystal of Syndiotactic Polystyrene
 Kobayashi, H.; Urakawa, O.; Kaneko, F.; Inoue, T.
 Nihon Reoroji Gakkaishi 2014, 42, 19-23.

- O-21 Reliability of Intrinsic Viscosity Estimated by Single Point Procedure at High Concentrations
 Inoue, T.; Oba, N.; Urakawa, O.
 Nihon Reoroji Gakkaishi 2014, 42, 261-264.
- O-22 Rapid Stretching Vibration at the Polymer Chain End Miwa, Y.; Udagawa, T.; Urakawa, O.; Nobukawa, S.; Kutsumizu, S. ACS Macro Lett. 2014, 3, 126-129.
- O-23 pH- and Sugar-Responsive Gel Assemblies Based on Boronate-Catechol Interactions
 Nakahata, M.; Mori, S.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A.
 ACS Macro Lett. 2014, 3, 337-340.
- O-24 Cyclodextrin-Based Molecular Machines Hashidzume, A.; Yamaguchi, H.; Harada, A. *Top. Curr. Chem.* **2014**, *354*, 71-110.
- O-25 A Metal-Ion-Responsive Adhesive Material via Switching of Molecular Recognition Properties
 Nakamura, T.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A.
 Nat. Commun. 2014, *5*, 4622.
- O-26 Redox–Responsive Macroscopic Gel Assembly Based on Discrete Dual Interactions Nakahata, M.; Takashima, Y.; Harada, A.
 Angew. Chem. Int. Ed. 2014, 53, 3617-3621.
- O-27 Supramolecular Polymeric Materials via Cyclodextrin–Guest Interactions Harada, A.; Takashima, Y.; Nakahata, M.
 Acc. Chem. Res. 2014, 47, 2128-2140.
- O-28 Supramolecular Adhesives to Hard Surfaces: Adhesion between Host Hydrogels and Guest Glass Substrates through Molecular Recognition Takashima, Y.; Sahara, T.; Sekine, T.; Kakuta, T.; Nakahata, M.; Otsubo, M.: Kobayashi, Y.; Harada, A.

Macromol. Rapid Commun. 2014, 35, 1646-1652.

- O-29 A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction Sekine, T.; Kakuta, T.; Nakamura, T.; Kobayashi, Y.; Takashima, Y.; Harada, A.
 Sci. Rep. 2014, 4, 6438.
- O-30 Crystallization and Preliminary X-ray Analysis of the Periplasmic Domain of FliP, an Integral Membrane Component of the Bacterial Flagellar type III Protein-Export Apparatus.
 Fukumura T.; Furukawa Y.; Kawaguchi T.; Saijo-Hamano Y.; Namba K.;

Fukumura 1.; Fukuwa Y.; Kawaguchi 1.; Saijo-Hamano Y.; Namba K.;
Imada K.; Minamino T.
Acta Crystallogr F Struct Biol Commun. 2014, 70, 1215-1218.

O-31 Conformational Change in the Periplamic Region of the Flagellar Stator Coupled with the Assembly around the Rotor.

Zhu S.; Takao M.; Li N.; Sakuma M.; Nishino Y.; Homma M.; Kojima S.; Imada K. *Proc. Natl. Acad. Sci. USA.* **2014**, *111*, 13523-13528.

O-32 Moisture Permeability of Cocoon Shells: Application of Thermogravimetrical method to Small Biological Samples
 Kaneko F.; Kawashita K.; Matsumura H.; Katagiri C.; Ogawa N.; Shirai K.; Banno Y.
 J. Insect Biotechnolo. Sericology 2014, 83, 41-46.

- O-33 Time-Resolved Small-Angle Neutron Scattering Study on Guest-Exchange Processes in Co-crystals of Syndiotactic Polystyrene Kaneko F.; Radulescu A.; Ute K.
 J. Appl. Cryst. 2014, 47, 6-13.
- O-34 Multiple Site Occupation of Flexible Polymeric Compounds in Crystals of Syndiotactic Polystyrene
 Kaneko F.; Seto N.; Sasaki K.; Sakurai S.
 Chem. Lett. 2014, 43, 904-906.

- O-35 ゲスト交換現象を利用したシンジオタクチックポリスチレンの共結晶化:高分子複合材料の可能性と機構の検討
 金子文俊
 高分子論文集 2014, 71, 540-553.
- O-36 Light Scattering from Hydrophobe-Uptake Spherical Micelles near the Critical Micelle Concentration
 Morishima, K.; Sato, T.
 Langmuir 2014, 30, 11513-11519.
- O-37 Self-Association of the Thermosensitive Block Copolymer Poly(2-isopropyl-2-oxazoline)-b-poly(N-isopropylacrylamide) in Water–Methanol Mixtures

Takahashi, R.; Qiu, X.-P.; Xue, N.; Sato, T.; Terao, K.; Winnik, F. M. *Macromolecules* **2014**, *47*, 6900-6910.

O-38 Aggregation Behavior of Polystyrene-Based Amphiphilic Diblock Copolymers in Organic Media

Arai, T.; Masaoka, M.; Michitaka, T.; Watanabe, Y.; Hashidzume, A.; Sato, T. *Polym. J.* **2014**, 46, 189-194.

- O-39 Aggregation and Phase Separation of Hydrophilically Modified Poly(dimethylsiloxane) in Methanol–Water Mixtures Okuhara, T.; Hashidzume, A.; Terao, K.; Sato, T. Polym. J. 2014, 46, 264-271.
- O-40 フマルアミド/N-イソプロピルアクリルアミド共重合体の水溶液の相挙動
 石井直子,松元亜紀子,橋爪章仁,佐藤尚弘
 高分子論文集 2014, 71, 361-366.
- O-41 Solution SAXS Measurements over a Wide Temperature Range. Unperturbed Chain Dimensions of Polystyrene and a Cyclic Amylose Derivative Terao, K.; Morihana, N.; Ichikawa, H.
 Polym. J. 2014, 46, 155-159.

Review Articles ——

- R-1 生体分子と人工化合物の融合による超分子錯体の機能化
 山口浩靖
 高分子 2014, 63, 43-44.
- R-2 非共有結合を利用した超分子材料の作製 自己修復性材料及びアクチュ エータ材料への展開 高島義徳 化学と工業 2014, 67 (3), 248-249.
- R-3 シクロデキストリンを触媒とする高分子合成
 原田明;高島義徳
 高分子 2014, 63, 174-175.
- R-4 刺激に応じて形態の変化する超分子ゲルアクチュエータ
 原田明;高島義徳;中畑雅樹;岩曽一恭;畠中省伍
 精密工学会誌 2014,80 (8),722.
- R-5 べん毛モーターの超高速回転を支える超分子リング構造形成のしくみ
 寺島浩行;本間道夫;今田勝巳
 生物物理 2014, 54, 19-21.

Books ———

- B-1 リビングカチオン重合(分担執筆)
 青島貞人,金岡鐘局
 高分子ナノテクノロジーハンドブック, pp. 272-279, NTS (2014).
- B-2 複屈折制御
 井上正志
 谷尾宣久編, 透明ポリマーの材料開発と高性能化,シーエムシー出版, 120-012 (2014).
- B-3 高分子固体のレオロジー井上正志

日本レオロジー学会編, 新講座・レオロジー, 日本レオロジー学会, 91-123 (2014).

B-4 Polycatenanes Yamaguchi, H.; Harada, A. Kobayashi, S.; Müllen, K., *Encyclopedia of Polymeric Nanomaterials*, Springer, 10.1007/SpringerReference_363663 (2014).

 B-5 Polyrotaxanes: Synthesis, Structure, and Chemical Properties Yamaguchi, H.; Harada, A.
 Kobayashi, S.; Müllen, K., *Encyclopedia of Polymeric Nanomaterials*, Springer, 10.1007/SpringerReference_363664 (2014).

- B-6 自己組織化・自己集合性
 山口浩靖
 原田明監修,超分子材料の設計と応用展開,シーエムシー出版,pp.
 10-20 (2014).
- B-7 人工金属酵素の超分子的機能化
 山口浩靖
 原田明監修,超分子材料の設計と応用展開,シーエムシー出版,pp.
 238-248 (2014).
- B-8 非共有結合型ポリマー
 高島義徳; 原田明
 日本化学会編, 化学便覧 応用化学編 第7版, 5.3.5, 丸善出版株式会社
 (2014).
- B-9 トポロジカル超分子
 高島義徳; 原田明
 高分子ナノテクノロジーハンドブック ~最新ポリマーABC 第2編第3
 章第1節, NTS 出版 (2014).
- B-10 シクロデキストリンの分子認識による自己修復ゲル
 高島義徳;原田明
 秋吉一成(京都大学)監修, 糖鎖の新機能開発応用ハンドブック ~創

薬・医療からヘルスケアまで~, 第2章第10節, NTS 出版 (2014).

- B-11 分子認識ゲル
 原田明;高島義徳;中畑雅樹
 中野義夫(東京工業大学)監修,ゲルテクノロジーハンドブック第7章
 第2節,NTS 出版 (2014).
- B-12 光散乱事始
 佐藤尚弘
 柴山充弘,佐藤尚弘,岩井俊昭,木村康之編,光散乱法の基礎と応用,講
 談社, pp. 1-13 (2014).
- B-13 静的光散乱法
 佐藤尚弘
 柴山充弘,佐藤尚弘,岩井俊昭,木村康之編,光散乱法の基礎と応用,講
 談社, pp. 20-70 (2014).
- B-14 アミロース誘導体の希薄溶液物性と構造
 寺尾憲
 柴山充弘,佐藤尚弘,岩井俊昭,木村康之編,光散乱法の基礎と応用,講
 談社, pp. 161-174 (2014).
- B-15 高分子集合体の構造解析
 佐藤尚弘
 柴山充弘,佐藤尚弘,岩井俊昭,木村康之編,光散乱法の基礎と応用,講
 談社, pp. 192-208 (2014).
- B-16 エネルギー変換超分子材料
 橋爪章仁
 原田 明監修,超分子材料の設計と応用展開,シーエムシー出版, pp. 197-206 (2014).

Miscellaneous Publications –

M-1 生体適合性コポリマー、これを利用する抗血栓コーティング剤及び医療用具 田中敬二;松野寿生;織田ゆか里;張翠;青島貞人;竹森利郁;明石 哲 特願 2014-176809(出願日:2014 年 9 月 1 日)

- M-2 α, β-不飽和エーテルおよび飽和環状エーテルの共重合体の製造方法 青島貞人; 金岡鐘局; 金澤有紘; 社地賢治; 井田大嗣 特許公開 2014-181298
- M-3 α, β-不飽和エーテルおよび飽和環状エーテルの非ハロゲン系共重合体並びにこれを含有する粘着剤組成物 青島貞人;金岡鐘局;金澤有紘;社地賢治;井田大嗣 特許公開 2014-181299
- M-4 ソフトマターのレオロジー:流動光学による精密解析
 井上正志
 生産と技術 2014, 66, 68-70.
- M-5 細菌の鞭毛モーターが活性化する仕組み解明
 今田勝巳
 科学新聞 2014, Sep 26.
- M-6 続・高分子の分子量 佐藤尚弘 *高分子* 2014, 63, 185-188.
- M-7 剛直性高分子のリオトロピック液晶 寺尾 憲; 佐藤尚弘 液晶 2014, 18, 108-117.
- M-8 シクロデキストリンによる高分子側鎖の認識とその機能化
 橋爪章仁
 超分子研究会アニュアルレビュー 2014, 34, 2-3.
- M-9 塩水溶液中におけるコラーゲンモデルペプチドと高分子電解質の複合体形成
 寺尾憲;金永亮子;吉田祐
 Photon Factory Activity Report 2013, Part B 2014 160.

博士・修士論文題目と 修了者の進路

修士論文題目(平成26年度修了者)

学生氏名	指導教員	論文題目
井上 隆太	栗栖 源嗣	深所型緑藻 Codium intricatum が持つ新規な集光性クロロフィル蛋白質複合体の結晶構造解析
大場 矢登	井上 正志	偏光イメージング法によるひも状ミセル水溶液の流動挙動解 析
岡田 奈津紀	青島 貞人	スチレン誘導体ポリマーの停止末端基からの再開始反応を用 いたブロックコポリマーの精密合成
小川 雄也	今田 勝巳	べん毛 III 型輸送装置蛋白質 FlhA の細胞質領域の構造変化
奥薗 美澄	井上 正志	ポリエーテルとポリビニルアルコール共重合体の水和と溶媒 和挙動
貝賀 緒臣	井上 正志	ポリスチレンのセグメント緩和における双極子配向相関に関 する誘電的研究
川村 茉莉絵	青島 貞人	特定位置に切断・分解性ユニットをもつ特殊構造ポリマーの設 計および精密合成
後藤 亜希	原田 明	ルテニウム塩添加により誘起されるポリアクリルアミドゲル の接着挙動
近藤 裕輝	今田 勝巳	高基質特異性 L-リシン酸化酵素の基質認識機構の解明
近藤 優壮	佐藤 尚弘	感熱応答性ブロック共重合体水溶液中における相分離とミセ ル化
鈴木 達矢	青島 貞人	反応性ミクロゲルをコア前駆体とした星型ポリマー精密合成 法の検討
住田 一真	中川 敦史	緑膿菌由来異物排出蛋白質の X 線結晶構造解析
田坂 駿	井上 正志	モノマー連鎖分布の異なる水素結合性高分子の会合構造と物 性
田中るみか	今田 勝巳	黄色蛍光タンパク質挿入変異体の系統的な構造解析
土方 舞	青島 貞人	ルイス酸/芳香族化合物開始剤系によるβ-ビネンとスチレン類 の制御カチオン共重合
東後 行倫	青島 貞人	1-メトキシ-1,3-ブタジエンのカチオン重合:生長反応および ミクロ構造制御
戸出 吉樹	青島 貞人	水/有機溶媒間で層間移動が可能な温度応答性高分子ミセルお よび星型ポリマーの設計と合成

日比野 晃裕	佐藤 尚弘	球状タンパク質の希薄水溶液中での酸変性と再性
藤井 愛美	鬼塚 清孝	構造制御を目指したモリブデン・タングステン酵素モデル錯 体の合成
古田 桃子	井上 正志	流動光学的手法によるレシチンひも状逆ミセル系の粘弾性 解析
松島 和司	今田 勝巳	べん毛 C-ring を構成する FliM-FliN 複合体のストイキオメト リとべん毛輸送
道尭 智裕	佐藤 尚弘	スルホ基を有する界面活性剤および高分子を用いたホルモ ース反応の制御
宮前 宏平	原田 明	ホスト-ゲスト相互作用に基づく可逆的な架橋を有するヒド ロゲルの物性評価とその機能
宮本 蒼	鬼塚 清孝	チオールエン反応を用いた光学活性高分子側鎖の修飾
牟田 寛弥	後藤 祐児	過飽和に支配されたインスリンアミロイド線維形成の超音 波による促進
森 麻美	佐藤 尚弘	3-アジド-1-プロピンの銅触媒アジド-アルキン環化付加重合 を利用したブロック共重合体の合成と特性化
山田 高義	鬼塚 清孝	モリブデン酵素活性部位の疎水空間における近傍プロトン の役割に関するモデル研究
LEE ISAAC ENG TING	原田 明	新たなドラッグデリバリーシステムの構築を目指した高分 子認識に基づくナノ粒子の創製
王 碧娟	佐藤 尚弘	アニオン性の両親媒性交互共重合体とポリカチオンの複合 体形成

以上29名

博士論文題目(平成26年度修了者)

学生氏名	指導教員	論文題目
関根 智子	原田 明	Adhesion of Materials using Covalent Bond Formation Reaction (共有結合形成反応を利用した材料の接着)
中畑 雅樹	原田 明	Formation of Functional Supramolecular Materials based on Stimuli-Responsive Molecular Recognition (マクロスケールでの自己組織化と外部刺激制御を融合し た新規機能性超分子材料の創製)
西河 洋祐	栗栖 源嗣	Structural Studies on the Stalk Region of the Dynein Motor Domain (ダイニンモータードメインにあるストーク領域の構造研 究)
長谷中 祐輝	鬼塚 清孝	Role of Hydrophobic Microenvironment at the Active Site of Molybdenum Oxidoreductases (モリブデン酸化還元酵素活性部位における疎水性微小環 境の役割に関する研究)
守島 健	佐藤 尚弘	Structure and Dynamics of Various Micellar Systems Composed of Low Molar Mass and Polymer Surfactants (低分子および高分子界面活性剤が形成する種々のミセル の構造とダイナミクス)
山田 麻友香	青島 貞人	Design of Monomer-Selective Cationic Copolymerization: Precision Domino Synthesis of Star-Shaped Polymers and Block Copolymers (モノマー選択的カチオン共重合の設計-星型ポリマーお よびブロック共重合体の精密ドミノ合成-)
吉満 隼人	青島 貞人	New Advances in Thermosensitive Polymers and Controlled Cationic Polymerization System Using Ionic Liquids (イオン液体を用いた温度応答性ポリマーおよび制御カチ オン重合の新しい展開)

以上7名

平成26年度博士前期·後期課程修了者進路

<博士前期課程>

進学

大阪大学大学院理学研究科 博士後期課程

就職

アース製薬(株)	宇部興産(株)	(株)クラレ
三洋化成工業(株)	住友化学(株)	積水化学工業(株)
(株)ダイセル	(株)東洋新薬	東洋紡
東レ(株)	(株)日本触媒	日本ペイント(株)
日本ロレアル(株)	浜松ホトニクス(株)	阪和興業(株)
(株)ブリヂストン	三井・デュポンフロロケミス	1ル(株)
(株)ミルボン	宇宙航空研究開発機構	化学物質評価研究機構
国家公務員(警察庁)		

<博士後期課程>

大阪大学理学部(技術補佐員)	
東京大学物性研究所(博士研究員)	
北海道大学触媒化学研究センター	

(株)クラレ 日本学術振興会特別研究員 三菱化学(株)

大阪大学大学院理学研究科高分子科学専攻

アニュアルレポート 2014

平成 27 年 5 月発行 発行所:大阪大学大学院理学研究科高分子科学専攻 〒560-0043 大阪府豊中市待兼山町1-1