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dictates the spontaneous cyclization with 
the nearest upstream Cys residue to form 

undesignated lariat-shaped peptides. 
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structurally constrained cyclopropane unit 
may change topological selectivity of the 
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corresponding ClAc-FGF-precursors in all other tested sequencestarget protein: cofactor-independent phosphoglycerate mutase from C. elegans (CeiPGM)

                     ✓ A species-selective drug target in filarial parasites
                     ✓ Previous conventional RaPID selection yielded lariat-shaped peptide ligands
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for the delamination of 2D Ti3C2Tx but also as stabilizers of the
colloidal suspension in water.

Powder X-ray diffraction (XRD) was performed on pristine
Ti3C2Tx powder, His-intercalated Ti3C2Tx, and d-Ti3C2Tx, as shown
in Figure 1c. The XRD pattern of pristine Ti3C2Tx powder showed
that the (002) reflection plane is weak, whereas the His-
intercalated Ti2C3Tx showed a (002) peak at 2θ=6.5° with d002

13.56 Å, suggesting the expansion of the interlayer spacing by
His intercalation. After delamination further expansion of the
interlayer spacing to 13.99 Å is recorded. Moreover, the
disappearance of the non-basal peak (due to the separation of
the layered structure by breaking the van der Waal’s force
between the layers at edge of the sheets[16,18]) at 2θ=60°
suggests the successful delamination by His, resulting in few-
layered d-Ti3C2Tx flakes in the aqueous solution.[16,18] From the
powder XRD pattern of AA-intercalated Ti3C2Tx, it is obvious that
the Ti3C2Tx-MXene (002) peak shifted to lower 2θ, suggesting
increasing interlayer spacing from Gly to His-intercalated Ti3C2Tx
(Supporting Information, Figure S2). The Raman spectra of the
pristine Ti3C2Tx were compared to those of the His-intercalated
and His@d-Ti3C2Tx flakes, as shown in Figure 1d. The Raman
spectra of pristine Ti3C2Tx displayed a weak band at 152 cm�1

can be assign for Ti�O vibrational mode (partially oxidize form
of Ti3C2Tx as anatase TiO2), and together with another three
bands at 266, 406 and 627 cm-1, which can be attributed to the
Ti�C vibrational modes in pristine Ti3C2Tx. The pristine Ti3C2Tx
displayed a very weak graphitic carbon like D and G bands,
revealing Ti is covalently bonded with C, thereby keeping an
ordered layered structure in Ti3C2Tx even in a strong acidic
condition (Al-elements etching out from the Ti3AlC2 MAX phase
with a fluoride salt (LiF) in HCl at 35 °C for 24 h[8a,9a,10a]). It is
important to note that an increasing the G band intensity is
seen for both His-intercalated Ti3C2Tx and His@d-Ti3C2Tx flakes,
however, D band only appeared for d-Ti3C2Tx by His revealing
an amorphous carbon nature.[19]

The Raman band at 3631 cm�1 is assigned to the stretching
vibrations of the inner surface -OH groups[19e] in His-intercalated
Ti3C2Tx and His@d-Ti3C2Tx, while the Raman band appeared at
about 3730 cm�1 in the Ti3C2Tx flakes is dominated by the -OH
terminal groups.[19a] The formation of rutile TiO2 on His@d-
Ti3C2Tx flakes was verified by Raman spectroscopy. Note that the
Raman signature band of Ti�C in pristine Ti3C2Tx is usually
appeared at 152 cm�1, which is became very weak with a blue
shift to 142 cm�1 for both His-intercalated Ti3C2Tx and His@d-
Ti3C2Tx flakes. The disapperance of Ti�C vibrational mode in
both His-intercalated Ti3C2Tx and His@d-Ti3C2Tx flakes revealed
the formation of rutile TiO2 by reaction with His at ambient
conditions, and the subsequent delamination process.[20] The
new Raman band at 234 cm�1, supporting the formation of
anatase-rutile mixed TiO2 on the surface of Ti3C2Tx by reaction
with His[20a] In addition, the pristine Ti3C2Tx Raman bands at 406
and 627 cm�1, both are red shifted to 446 and 612 cm�1,
respectively, representing the rutile TiO2 vibrational band of Eg
and A1g. In the end, the Raman spectra of d-Ti3C2Tx by AAs
demonstrate the presence of rutile TiO2 in d-Ti3C2Tx sample.[20–21]

The delamination of Ti3C2Tx by other AAs (such as Gly, Ala, Phe
and Trp) were also examined on TiO2 formation on d-Ti3C2Tx,

and verified by Raman analysis (Supporting Information, Fig-
ure S2b).

The ATR-FTIR spectra of pristine Ti3C2Tx and the His@TiO2@d-
Ti3C2Tx flakes are shown in supporting information (Figure S3).
Unlike the spectrum of histidine, the carboxylate ion bands
were not observed for the His@TiO2/d-Ti3C2Tx hybrid at
1629 cm�1 and 1416 cm�1 for the asymmetric stretching
vibration of carboxylate ion (υasCOO�) and symmetric stretching
vibration of carboxylate ion (υsCOO�), respectively. The absence
of such bands suggested the non-ionized form of carboxylic
acids group in His functionalized His@TiO2/d-Ti3C2Tx and it is
further evidence that a strong band at 1730 cm�1 corresponded
to the stretching vibration of carboxylic C=O of the non-ionized
form of �COOH group. [22] Interestingly, the characteristic IR
vibration bands observed at 3177 cm�1 are attributed to the
symmetric stretching N�H (υN�H) from the imidazole ring. Also,
IR peaks at 1516, 1472, 1141 and 733 cm�1 were attributed to
the υsC=N stretching, symmetric bending NH2 (δNH2), a
combination of imidazole ring stretching and bending vibration
of C=N and N�H (υ=C�N/δ=N�H) and deformation C=N,
respectively. These bands confirmed the presence of histidine
on the surface of TiO2@d-Ti3C2Tx.[15,23] The morphology of pristine
Ti3C2Tx powder, His-intercalated, and His@TiO2/d-Ti3C2Tx flakes
are shown in Figure 2. The His-intercalated Ti3C2Tx sample
exhibited a layered flake covered with spherical particles, which
are presumed to be rutile TiO2 particle on MXene surface
(Figure 2b). However, most of these particles (~100 nm) were
not seen after the subsequent delamination process (High-
resolution TEM images in Figure 2d-e). Whereas, a nano-sized
TiO2 particles were seen (marked with yellow circle) which were
not seen uniformly distributed on d-Ti3C2Tx flakes. It was
thought that >100 nm size particles were removed by
centrifugation (3,000 rpm for 30 min) after the delamination
process. The delamination process by sonication led to few

Figure 2. SEM micrographs of (a) pristine Ti3C2Tx powder, (b) His-intercalated
Ti3C2Tx and (c) TiO2@d-Ti3C2Tx with histidine hybrid. Low-resolution TEM
image of a His@TiO2@d-Ti3C2Tx hybrid (c) and corresponding high-resolution
TEM images (e and f). The high-resolution TEM image showing the TiO2 on
MXene flakes. The inset (panel: f) is the SAED diffraction pattern for the
selected area of His@TiO2@d-Ti3C2Tx.
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for the delamination of 2D Ti3C2Tx but also as stabilizers of the
colloidal suspension in water.

Powder X-ray diffraction (XRD) was performed on pristine
Ti3C2Tx powder, His-intercalated Ti3C2Tx, and d-Ti3C2Tx, as shown
in Figure 1c. The XRD pattern of pristine Ti3C2Tx powder showed
that the (002) reflection plane is weak, whereas the His-
intercalated Ti2C3Tx showed a (002) peak at 2θ=6.5° with d002

13.56 Å, suggesting the expansion of the interlayer spacing by
His intercalation. After delamination further expansion of the
interlayer spacing to 13.99 Å is recorded. Moreover, the
disappearance of the non-basal peak (due to the separation of
the layered structure by breaking the van der Waal’s force
between the layers at edge of the sheets[16,18]) at 2θ=60°
suggests the successful delamination by His, resulting in few-
layered d-Ti3C2Tx flakes in the aqueous solution.[16,18] From the
powder XRD pattern of AA-intercalated Ti3C2Tx, it is obvious that
the Ti3C2Tx-MXene (002) peak shifted to lower 2θ, suggesting
increasing interlayer spacing from Gly to His-intercalated Ti3C2Tx
(Supporting Information, Figure S2). The Raman spectra of the
pristine Ti3C2Tx were compared to those of the His-intercalated
and His@d-Ti3C2Tx flakes, as shown in Figure 1d. The Raman
spectra of pristine Ti3C2Tx displayed a weak band at 152 cm�1

can be assign for Ti�O vibrational mode (partially oxidize form
of Ti3C2Tx as anatase TiO2), and together with another three
bands at 266, 406 and 627 cm-1, which can be attributed to the
Ti�C vibrational modes in pristine Ti3C2Tx. The pristine Ti3C2Tx
displayed a very weak graphitic carbon like D and G bands,
revealing Ti is covalently bonded with C, thereby keeping an
ordered layered structure in Ti3C2Tx even in a strong acidic
condition (Al-elements etching out from the Ti3AlC2 MAX phase
with a fluoride salt (LiF) in HCl at 35 °C for 24 h[8a,9a,10a]). It is
important to note that an increasing the G band intensity is
seen for both His-intercalated Ti3C2Tx and His@d-Ti3C2Tx flakes,
however, D band only appeared for d-Ti3C2Tx by His revealing
an amorphous carbon nature.[19]

The Raman band at 3631 cm�1 is assigned to the stretching
vibrations of the inner surface -OH groups[19e] in His-intercalated
Ti3C2Tx and His@d-Ti3C2Tx, while the Raman band appeared at
about 3730 cm�1 in the Ti3C2Tx flakes is dominated by the -OH
terminal groups.[19a] The formation of rutile TiO2 on His@d-
Ti3C2Tx flakes was verified by Raman spectroscopy. Note that the
Raman signature band of Ti�C in pristine Ti3C2Tx is usually
appeared at 152 cm�1, which is became very weak with a blue
shift to 142 cm�1 for both His-intercalated Ti3C2Tx and His@d-
Ti3C2Tx flakes. The disapperance of Ti�C vibrational mode in
both His-intercalated Ti3C2Tx and His@d-Ti3C2Tx flakes revealed
the formation of rutile TiO2 by reaction with His at ambient
conditions, and the subsequent delamination process.[20] The
new Raman band at 234 cm�1, supporting the formation of
anatase-rutile mixed TiO2 on the surface of Ti3C2Tx by reaction
with His[20a] In addition, the pristine Ti3C2Tx Raman bands at 406
and 627 cm�1, both are red shifted to 446 and 612 cm�1,
respectively, representing the rutile TiO2 vibrational band of Eg
and A1g. In the end, the Raman spectra of d-Ti3C2Tx by AAs
demonstrate the presence of rutile TiO2 in d-Ti3C2Tx sample.[20–21]

The delamination of Ti3C2Tx by other AAs (such as Gly, Ala, Phe
and Trp) were also examined on TiO2 formation on d-Ti3C2Tx,

and verified by Raman analysis (Supporting Information, Fig-
ure S2b).

The ATR-FTIR spectra of pristine Ti3C2Tx and the His@TiO2@d-
Ti3C2Tx flakes are shown in supporting information (Figure S3).
Unlike the spectrum of histidine, the carboxylate ion bands
were not observed for the His@TiO2/d-Ti3C2Tx hybrid at
1629 cm�1 and 1416 cm�1 for the asymmetric stretching
vibration of carboxylate ion (υasCOO�) and symmetric stretching
vibration of carboxylate ion (υsCOO�), respectively. The absence
of such bands suggested the non-ionized form of carboxylic
acids group in His functionalized His@TiO2/d-Ti3C2Tx and it is
further evidence that a strong band at 1730 cm�1 corresponded
to the stretching vibration of carboxylic C=O of the non-ionized
form of �COOH group. [22] Interestingly, the characteristic IR
vibration bands observed at 3177 cm�1 are attributed to the
symmetric stretching N�H (υN�H) from the imidazole ring. Also,
IR peaks at 1516, 1472, 1141 and 733 cm�1 were attributed to
the υsC=N stretching, symmetric bending NH2 (δNH2), a
combination of imidazole ring stretching and bending vibration
of C=N and N�H (υ=C�N/δ=N�H) and deformation C=N,
respectively. These bands confirmed the presence of histidine
on the surface of TiO2@d-Ti3C2Tx.[15,23] The morphology of pristine
Ti3C2Tx powder, His-intercalated, and His@TiO2/d-Ti3C2Tx flakes
are shown in Figure 2. The His-intercalated Ti3C2Tx sample
exhibited a layered flake covered with spherical particles, which
are presumed to be rutile TiO2 particle on MXene surface
(Figure 2b). However, most of these particles (~100 nm) were
not seen after the subsequent delamination process (High-
resolution TEM images in Figure 2d-e). Whereas, a nano-sized
TiO2 particles were seen (marked with yellow circle) which were
not seen uniformly distributed on d-Ti3C2Tx flakes. It was
thought that >100 nm size particles were removed by
centrifugation (3,000 rpm for 30 min) after the delamination
process. The delamination process by sonication led to few

Figure 2. SEM micrographs of (a) pristine Ti3C2Tx powder, (b) His-intercalated
Ti3C2Tx and (c) TiO2@d-Ti3C2Tx with histidine hybrid. Low-resolution TEM
image of a His@TiO2@d-Ti3C2Tx hybrid (c) and corresponding high-resolution
TEM images (e and f). The high-resolution TEM image showing the TiO2 on
MXene flakes. The inset (panel: f) is the SAED diffraction pattern for the
selected area of His@TiO2@d-Ti3C2Tx.
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The obtained peptides exhibited potent inhibitory activity to CeiPGM.

6. Conclusion
The newly designed cyclopropane-containing initiator yielded 

a topologically different type of peptide libraries from conventional initiators.

Such a cyclopropane-containing macrocycle library would allow us to access 
mechanistically distinct macrocycle ligands.
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