キラリティー転写を利用したP-キラル化合物合成法の開発

A03-3

(岐阜大工)村井利昭

Effect of counter cation and reaction temperature

Configurations of P atom

Plausible reaction pathway

·Path A: Attack of alkoxide to back side of proS P-O bond

•Path B: Attack of alkoxide to back side of proR P-O bond

As substituents on the phosphorus atom, alkyl and aryl groups are availa

Substrate scope

B3LYP/6-31G(d,p) scrf=(solvent=THF)//B3LYP/6-31G(d,p) (@298 K, 1 atm)

Configuration of P atom

Axis-to-Center chirality transfer

high stereoselectivities.

The Intermediates were readily hydrolyzed.

No need to separate of stereoisomers

Optimization of reaction conditions

Control experiment

Epimerization of the product did not occur.

Second alcoholysis: effect of base

a a a a a a a a a a a a a a a a a a a	0H 0- Me- >95:	P-OEtMe	Condition	on ► BnC Me	P-OEt Me	
condition	м	base	S.M.	time (h)	yield (%)	ee (%)
BnOM	Na		(R _{ax} , S)	0.5	72	-88
(3.5 equiv)	Li		$(R_{ax,}S)$	4	86	-58
BnOM	Na	NHMDS	(S _{ax} , R)	0.5	70	>99
(2.5 equiv)	Li	<i>n</i> -BuLi	(R_{ax}, S)	4	84	<-99
BnOM		DBU	(S _{ax} , R)	24	15	66
(2.5 equiv) Base (3.5 equiv)		NHMDS	(<i>R</i> _{ax,} <i>S</i>)	0.5	92	>99

The reaction was carried out at rt.

· Alcoholysis proceeded via axis-to-center chirality transfer. •The stereoselectivities depend on the solvents and the counter cation. The coordination induces high diastereoselectivities.

 NHMDS was necessary to improve the stereoselectivities. · 2nd step alcoholysis proceeded in 'almost' with inversion of configuration at the phosphorus atom ·Both enantiomers were synthesized starting from single phosphonothioates.

Kuwabara, K.; Maekawa, Y.; Minoura, M.; Maruyama, T.; Murai, T. J. Org. Chem. doi.org/10.1021/acs.joc. 0c00687.