References 

    1. Walsh, G.; Jefferis, R. Post-Translational Modifications in the Context of Therapeutic Proteins. Nat. Biotechnol. 2006, 24, 1241-52.

    2. Okayama, A.; Miyagi, Y.; Oshita, F.; Ito, H.; Nakayama, H.; Nishi, M.; Kurata, Y.; Kimura, Y.; Ryo, A.; Hirano, H. Identification of Tyrosine-Phosphorylated Proteins Upregulated during Epithelial–Mesenchymal Transition Induced with TGF-β. J. Proteome Res. 2015, 14, 4127-4136.

    3. Nagata, K.; Kawakami, T.; Kurata, Y.; Kimura, Y.; Suzuki, Y.; Nagata, T.; Sakuma, Y.; Miyagi, Y.; Hirano, H. Augmentation of Multiple Protein Kinase Activities Associated with Secondary Imatinib Resistance in Gastrointestinal Stromal Tumors as Revealed by Quantitative Phosphoproteome Analysis. J. Proteom. 2015, 115, 132-42.

    4. Ishigami, A.; Masutomi, H.; Handa, S.; Nakamura, M.; Nakaya, S.; Uchida, Y.; Saito, Y.; Murayama, S.; Jang, B.; Jeon, Y. C.; Choi, E. K.; Kim, Y. S.; Kasahara, Y.; Maruyama, N.; Toda, T. Mass Spectrometric Identification of Citrullination Sites and Immunohistochemical Detection of Citrullinated Glial Fibrillary Acidic Protein in Alzheimer's Disease Brains. J. Neurosci. Res. 2015, 93, 1664-74.

    5. Ishigami, A.; Ohsawa, T.; Hiratsuka, M.; Taguchi, H.; Kobayashi, S.; Saito, Y.; Murayama, S.; Asaga, H.; Toda, T.; Kimura, N.; Maruyama, N. Abnormal Accumulation of Citrullinated Proteins Catalyzed by Peptidylarginine Deiminase in Hippocampal Extracts from Patients with Alzheimer's Disease. J. Neurosci. Res. 2005, 80, 120-8.

    6. Wong, C.-H., Protein Glycosylation:  New Challenges and Opportunities. J. Org. Chem. 2005, 70, 4219-4225.

    7. Unverzagt, C.; Kajihara, Y. Recent Advances in the Chemical Synthesis of N-linked Glycoproteins. Curr. Opin. Chem. Biol. 2018, 46, 130-137.

    8. Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargoet, M.; Monbaliu, J. M.; Melnyk, O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem. Rev. 2019, 119, 7328-7443.

    9. Dawson, P. E.; Kent, S. B. Synthesis of Native Proteins by Chemical Ligation. Annu. Rev. Biochem. 2000, 69, 923-60.

    10. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Synthesis of Proteins by Native Chemical Ligation. Science 1994, 266, 776-9.

    11. Yan, L. Z.; Dawson, P. E. Synthesis of Peptides and Proteins without Cysteine Residues by Native Chemical Ligation Combined with Desulfurization. J. Am. Chem. Soc. 2001, 123, 526-33.

    12. Wan, Q.; Danishefsky, S. J. Free-Radical-Based, Specific Desulfurization of Cysteine: a Powerful Advance in the Synthesis of Polypeptides and Glycopolypeptides. Angew. Chem. Int. Ed. Engl. 2007, 46, 9248-52.

    13. Thompson, R. E.; Chan, B.; Radom, L.; Jolliffe, K. A.; Payne, R. J. Chemoselective Peptide Ligation–Desulfurization at Aspartate. Angew. Chem. Int. Ed. Engl. 2013, 52, 9723-9727.

    14. Kulkarni, S. S.; Sayers, J.; Premdjee, B.; Payne, R. J. Rapid and Efficient Protein Synthesis through Expansion of the Native Chemical Ligation Concept. Nat. Rev. Chem. 2018, 2, 0122.

    15. Wong, C. T. T.; Tung, C. L.; Li, X. Synthetic Cysteine Surrogates Used in Native Chemical Ligation. Mol. Biosyst. 2013, 9, 826-833.

    16. Payne, R. J.; Wong, C. H. Advances in Chemical Ligation Strategies for the Synthesis of Glycopeptides and Glycoproteins. Chem. Commun. (Camb) 2010, 46, 21-43.

    17. Seko, A.; Koketsu, M.; Nishizono, M.; Enoki, Y.; Ibrahim, H. R.; Juneja, L. R.; Kim, M.; Yamamoto, T. Occurrence of a Sialylglycopeptide and Free Sialylglycans in Hen's Egg Yolk. Biochim. Biophys. Acta. 1997, 1335 (1-2), 23-32.

    18. Fukae, K.; Yamamoto, N.; Hatakeyama, Y.; Kajihara, Y. Chemoenzymatic Synthesis of Diverse Asparagine-Linked Alpha-(2,3)-sialyloligosaccharides. Glycoconj. J. 2004, 21, 243-50.

    19. Kajihara, Y.; Suzuki, Y.; Yamamoto, N.; Sasaki, K.; Sakakibara, T.; Juneja, L. R. Prompt Chemoenzymatic Synthesis of Diverse Complex-type Oligosaccharides and Its Application to the Solid-Phase Synthesis of a Glycopeptide with Asn-linked Sialyl-undeca- and Asialo-nonasaccharides. Chem. Eur. J. 2004, 10, 971-85.

    20. Maki, Y.; Okamoto, R.; Izumi, M.; Murase, T.; Kajihara, Y. Semisynthesis of Intact Complex-Type Triantennary Oligosaccharides from a Biantennary Oligosaccharide Isolated from a Natural Source by Selective Chemical and Enzymatic Glycosylation. J. Am. Chem. Soc. 2016, 138, 3461-8.

    21. Maki, Y.; Nomura, K.; Okamoto, R.; Izumi, M.; Mizutani, Y.; Kajihara, Y. Acceleration and Deceleration Factors on the Hydrolysis Reaction of 4,6-O-Benzylidene Acetal Group. J. Org. Chem. 2020, 85, 15849-15856.

    22. Yamamoto, N.; Takayanagi, A.; Yoshino, A.; Sakakibara, T.; Kajihara, Y. An Approach for a Synthesis of Asparagine-Linked Sialylglycopeptides Having Intact and Homogeneous Complex-Type Undecadisialyloligosaccharides. Chem. Eur. J. 2007, 13, 613-625.

    23. Yamamoto, N.; Tanabe, Y.; Okamoto, R.; Dawson, P. E.; Kajihara, Y. Chemical Synthesis of a Glycoprotein Having an Intact Human Complex-type Sialyloligosaccharide under the Boc and Fmoc Synthetic Strategies. J. Am. Chem. Soc. 2008, 130, 501-10.

    24. Sakamoto, I.; Tezuka, K.; Fukae, K.; Ishii, K.; Taduru, K.; Maeda, M.; Ouchi, M.; Yoshida, K.; Nambu, Y.; Igarashi, J.; Hayashi, N.; Tsuji, T.; Kajihara, Y. Chemical Synthesis of Homogeneous Human Glycosyl-Interferon-β that Exhibits Potent Antitumor Activity in vivo. J. Am. Chem. Soc. 2012, 134, 5428-31.

    25. Murakami, M.; Okamoto, R.; Izumi, M.; Kajihara, Y. Chemical Synthesis of an Erythropoietin Glycoform Containing a Complex-type Disialyloligosaccharide. Angew. Chem. Int. Ed. Engl. 2012, 51, 3567-72.

    26. Murakami, M.; Kiuchi, T.; Nishihara, M.; Tezuka, K.; Okamoto, R.; Izumi, M.; Kajihara, Y. Chemical Synthesis of Erythropoietin Glycoforms for Insights into the Relationship between Glycosylation Pattern and Bioactivity. Sci. Adv. 2016, 2, e1500678.

    27. [a] Okamoto, R.; Mandal, K.; Ling, M.; Luster, A. D.; Kajihara, Y.; Kent, S. B. Total Chemical Synthesis and Biological Activities of Glycosylated and Non-glycosylated Forms of the Chemokines CCL1 and Ser-CCL1. Angew. Chem. Int. Ed. Engl. 2014, 53, 5188-93.[b] Prof. Dr. Ryo Okamoto, Dr. Kalyaneswar Mandal, Dr. Michael R. Sawaya, Prof. Dr. Yasuhiro Kajihara, Prof. Dr. Todd O. Yeates, Prof. Dr. Stephen B. H. Kent, (Quasi-)Racemic X-ray Structures of Glycosylated and Non-Glycosylated Forms of the Chemokine Ser-CCL1 Prepared by Total Chemical Synthesis, Angew. Chem. Int. Ed. 2014, 53, 5194-5198.

    28. Minh Hien, N.; Izumi, M.; Sato, H.; Okamoto, R.; Kajihara, Y. Chemical Synthesis of Glycoproteins with the Specific Installation of Gradient-Enriched 15N-Labeled Amino Acids for Getting Insights into Glycoprotein Behavior. Chem. Eur. J. 2017, 23, 6579-6585.

    29. Nomura, K.; Maki, Y.; Okamoto, R.; Satoh, A.; Kajihara, Y. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy. J. Am. Chem. Soc. 2021, 143, 10157-10167.

    30. Tam, J. P.; Lu, Y. A.; Liu, C. F.; Shao, J. Peptide Synthesis Using Unprotected Peptides through Orthogonal Coupling Methods. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 12485-9.

    31. Zhang, X.; Li, F.; Liu, C. F. Synthesis of Histone H3 Proteins by a Thioacid Capture Ligation Strategy. Chem. Commun. (Camb) 2011, 47, 1746-8.

    32. Izumi, M.; Makimura, Y.; Dedola, S.; Seko, A.; Kanamori, A.; Sakono, M.; Ito, Y.; Kajihara, Y. Chemical Synthesis of Intentionally Misfolded Homogeneous Glycoprotein: A Unique Approach for the Study of Glycoprotein Quality Control. J. Am. Chem. Soc. 2012, 134, 7238-7241.

    33. Dedola, S.; Izumi, M.; Makimura, Y.; Seko, A.; Kanamori, A.; Sakono, M.; Ito, Y.; Kajihara, Y. Folding of Synthetic Homogeneous Glycoproteins in the Presence of a Glycoprotein Folding Sensor Enzyme. Angew. Chem. Int. Ed. Engl. 2014, 53, 2883-7.

    34. Kiuchi, T.; Izumi, M.; Mukogawa, Y.; Shimada, A.; Okamoto, R.; Seko, A.; Sakono, M.; Takeda, Y.; Ito, Y.; Kajihara, Y. Monitoring of Glycoprotein Quality Control System with a Series of Chemically Synthesized Homogeneous Native and Misfolded Glycoproteins. J. Am. Chem. Soc. 2018, 140, 17499-17507.

    35. Muir, T. W.; Sondhi, D.; Cole, P. A. Expressed Protein Ligation: a General Method for Protein Engineering. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6705-10.

    36. Muir, T. W. Semisynthesis of Proteins by Expressed Protein Ligation. Annu. Rev. Biochem. 2003, 72, 249-89.

    37. Ling, J. J.; Policarpo, R. L.; Rabideau, A. E.; Liao, X.; Pentelute, B. L. Protein Thioester Synthesis Enabled by Sortase. J. Am. Chem. Soc. 2012, 134, 10749-52.

    38. Nguyen, G. K.; Wang, S.; Qiu, Y.; Hemu, X.; Lian, Y.; Tam, J. P. Butelase 1 is an Asx-specific Ligase Enabling Peptide Macrocyclization and Synthesis. Nat. Chem. Biol. 2014, 10, 732-8.

    39. Komiya, C.; Shigenaga, A.; Tsukimoto, J.; Ueda, M.; Morisaki, T.; Inokuma, T.; Itoh, K.; Otaka, A. Traceless Synthesis of Protein Thioesters Using Enzyme-Mediated Hydrazinolysis and Subsequent Self-Editing of the Cysteinyl Prolyl Sequence. Chem. Commun. 2019, 55, 7029-7032.

    40. Okamoto, R.; Morooka, K.; Kajihara, Y. A Synthetic Approach to a Peptide α-Thioester from an Unprotected Peptide through Cleavage and Activation of a Specific Peptide Bond by N-acetylguanidine. Angew. Chem. Int. Ed. Engl. 2012, 51, 191-6.

    41. Kajihara, Y.; Kanemitsu, Y.; Nishihara, M.; Okamoto, R.; Izumi, M., Efficient Synthesis of Polypeptide-α-thioester by the Method Combining Polypeptide Expression and Chemical Activation for the Semi-synthesis of Interferon-γ Having Oligosaccharides. J. Pept. Sci. 2014, 20, 958-63.

    42. Okamoto, R.; Iritani, K.; Amazaki, Y.; Zhao, D.; Chandrashekar, C.; Maki, Y.; Kanemitsu, Y.; Kaino, T.; Kajihara, Y. Semisynthesis of a Homogeneous Glycoprotein Using Chemical Transformation of Peptides to Thioester Surrogates. J. Org. Chem. 2022, 87, 114-124.

    43. Kawakami, T.; Sumida, M.; Nakamura, K. i.; Vorherr, T.; Aimoto, S. Peptide Thioester Preparation Based on an N-S Acyl Shift Reaction Mediated by a Thiol Ligation Auxiliary. Tetrahedron Lett. 2005, 46, 8805-8807.

    44. Nakamura, K. i.; Sumida, M.; Kawakami, T.; Vorherr, T.; Aimoto, S. Generation of an S-Peptide via an N–S Acyl Shift Reaction in a TFA Solution. Bull. Chem. Soc. Jpn. 2006, 79, 1773-1780.

    45. Kang, J.; Macmillan, D. Peptide and Protein Thioester Synthesis via N→S Acyl Transfer. Org. Biomol. Chem. 2010, 8, 1993-2002.

    46. Okamoto, R.; Kimura, M.; Ishimizu, T.; Izumi, M.; Kajihara, Y. Semisynthesis of a Post-Translationally Modified Protein by Using Chemical Cleavage and Activation of an Expressed Fusion Polypeptide. Chem. Eur. J. 2014, 20, 10425-30.