Publication

2023

  1. Semisynthesis of homogeneous misfolded glycoprotein interleukin-8, Y. P. Mamahit, Y. Maki, R. Okamoto, Y. Kajihara, Carbohydr. Res. 2023, 531, 108847.
  2. Rapid Chemical Synthesis of Serine Protease Inhibitor Kazal-type 13 (SPINK13) Glycoform by a Combined Method with Glycan Insertion Strategy and Fast-Flow Fmoc SPPS, K. Nomura, R. Okamoto,Y. Maki,A. Hayashibara,T. Takao,T. Fukuoka, E. Miyoshi, B. L. Pentelute, Y. Kajihara, Chem. Eur. J 2023, 29, e202300646.
  3. Regulating Antifreeze Activity through Water: Latent Functions of the Sugars of Antifreeze Glycoprotein Revealed by Total Chemical Synthesis, Chem. Okamoto, R.; Orii, Ryo; Shibata, H.; Maki, Y.; Tsuda, S.; Kajihara, Y., Chem. Eur. J. 2023, e202203553.The cover picture was selected:https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202300690
  4. Squaryl group-modified UDP analogs as inhibitors of the endoplasmic reticulum-resident folding sensor enzyme UGGT, Abe, J.; Takeda, Y.; Kikuma, T.; Kizuka, Y.; Kajiura, H.; Kajihara, Y.; Ito, Y., Chemical Communications, 2023, 59(19), 2803-2806.
  5. Recent advances on the synthesis of N-linked glycoprotein for the elucidation of glycan functions, Liu, Y.; Nomura, K.; Abe, J.; Kajihara, Current Opinion in Chemical Biology (2023), 73, 102263.


2022

  1. Design and Synthesis of Glycosylated Cholera Toxin B Subunit as a Tracer of Glycoprotein Trafficking in Organelles of Living Cells, Y. Maki, K. Kawata, Y. Liu, K-Y. Goo, R. Okamoto, Y. Kajihara, A. Satoh,Chem. Eur. J., 2022,28 (37), 202201253
  2. Ethanolamine-phosphate on the second mannose is a preferenti, M. Ishida; Y. Maki; A. Ninomiya; Y. Takada; P. Campeau;T. Kinoshita; Y. Murakami,EMBO reports, 2022, e54352
  3. Optimizing the semisynthesis towards glycosylated interferon-β-polypeptide by utilizing bacterial protein expression and chemical modification, Chong, Yie Kie;C. Chandrashekar; Donglin, Z.; Y. Maki; R. Okamoto; Y. Kajihara, Org. Biomol.Chem. (2022), 20(9), 1907-1915
  4. Semisynthesis of a Homogeneous Glycoprotein Using Chemical Transformation of Peptides to Thioester Surrogates, R. Okamoto; K. Iritani; Y.Amazaki; D. Zhao; C. Chandrashekar; Y. Maki; Y. Kanemitsu; T. Kaino; Y.Kajihara, J. Org. Chem. (2022), 87(1), 114-124


2021

  1. Glycoprotein Synthesis, C. Chandrashekar; K. Iritani; T. Moriguchi; Y. Kajihara, Total Chemical Synthesis of Proteins, Wiley, (2021), 411-436
  2. Purified EDEM3 or EDEM1 alone produces determinant oligosaccharide structures from M8B in mammalian glycoprotein ERAD. G. George; S.Ninagawa ; H. Yagi; J. Furukawa; N. Hashii; A. Ishii-Watabe; Y. Deng; K. Matsushita; T. Ishikawa; Y. P. Mamahit; Y. Maki; Y. Kajihara; K. Kato; T. Okada; K. Mori, eLife, 2021,10:e70357. DOI: https://doi.org/10.7554/eLife.70357.
  3. Studies in glycopeptide synthesis. Kajihara, Y.; Nishikawa, R.; Maki, Y.; Okamoto, R., ARKIVOC, 2021, (4), 230-240.
  4. Chemical synthesis and characterization of a nonfibrillating glycoglucagon.Liu, M.; Zhao, P.; Uddin, M. H.; Li, W.; Lin, F.; Chandrashekar, C.; Nishiuchi, Y.; Kajihara, Y.; Forbes, B. E.; Wootten, D.; Wade, J. D.; Hossain, M. A., Bioconjugate Chem. 2021,32,10,2148–2153.
  5. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy.Nomura, K.; Maki, Y.; Okamoto, R.; Satoh, A.; Kajihara, Y., J. Am. Chem. Soc. 2021, 143 (27), 10157-10167.


2020

  1. Chemical-Synthesis-Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Ito, Y.; Kajihara, Y.; Takeda, Y. Chemistry Eur. J. 2020, 26(67), 15461-15470
  2. Chemical Synthesis of an Erythropoietin Glycoform Having a Triantennary N-Glycan: Significant Change of Biological Activity of Glycoprotein by Addition of a Small Molecular Weight Trisaccharide. Yuta Maki, Ryo Okamoto, Masayuki Izumi, Yasuhiro Kajihara, J. Am. Chem. Soc. 2020, 142, 20671-20679.
  3. Studies for Elucidation of Oligosaccharide Functions of Glycoproteins, Yuta Maki, Ryo Okamoto, Masumi Murakami, Yasuhiro Kajihara, Journal of Synthetic Organic Chemistry, 2020, 78, 1021-1038.
  4. Chemical synthesis of ubiquitinated high-mannose type N-glycoprotein CCL1 in different folding states, Masayuki Izumi, Hiroyuki Araki, Mamiko Tominaga, Ryo Okamoto, Yasuhiro Kajihara,J.Org.Chem2020, 85, 16024-16034.
  5. Ultra-large chemical libraries for the discovery of high-affinity peptide binders, Anthony J. Quartararo, Zachary P. Gates, Bente A. Somsen, Nina Hartrampf, Xiyun Ye, Arisa Shimada, Yasuhiro Kajihara, Christian Ottmann, Bradley L. Pentelute, Nat. Commun., https://doi.org/10.1038/s41467-020-16920-3
  6. Acceleration and Deceleration Factors on the Hydrolysis Reaction of 4,6-O-Benzylidene Acetal Group. Yuta Maki, Kota Nomura, Ryo Okamoto, Masayuki Izumi, Yasuhisa Mizutani, Yasuhiro Kajihara, J. Org. Chem. 2020, 85, 15849+15856.
  7. Total Chemical Synthesis of a Nonfibrillating Human Glycoinsulin. M. A. Hossain, R. Okamoto, J. A. Karas, P. Praveen, M. Liu, B. E. Forbes, J. D. Wade, Y. Kajihara, J. Am. Chem. Soc., 2020, 142, 1164-1169.
  8. Identification of the epitope of 10-7G glycan antibody to recognize cancer-associated haptoglobin. K. Morishita, Y. Maki, S. Takamatsu, N. Ito, S. Koda, K. Motooka, Y. Kamada, Y. Kajihara, E. Miyoshi, Anal. Biochem. 2020, 593, 113588.
  9. α2, 3-linkage of sialic acid to a GPI-anchor and an unpredicted GPI attachment site in human prion protein, Atsushi Kobayashi1, Tetsuya Hirata, Takashi Nishikaze, Akinori Ninomiya, Yuta Maki, Yoko Takada, Tetsuyuki Kitamoto, and Taroh Kinoshita, J. Biol. Chem. doi: 10.1074/jbc.RA120.013444


2019

  1. Chemical Modification of the N Termini of Unprotected Peptides for Semisynthesis of Modified Proteins by Utilizing a Hydrophilic Protecting Group. C. Chandrashekar, R.Okamoto, M. Izumi,Y. Kajihara. Chem. Eur. J., 2019, 25, 10197-10203. doi.org/10.1002/chem.201901778
  2. A chemoselective peptide bond formation by amino thioacid coupling Ryo Okamoto ,Kota Nomura ,Yuta Maki ,and Yasuhiro Kajihara . Chem. Lett. doi.org/10.1246/cl.190607
  3. Recent Chemical Glycoprotein Synthesis. Y. Kajihara, Trends in Glycoscience and Glycotechnology, doi:10.4052/tigg.1912.2SE
  4. Regioselective α-peptide bond formation through the oxidation of amino thioacids. Ryo Okamoto, Takuya Haraguchi, Kota Nomura, Yuta Maki, Masayuki Izumi, Yasuhiro Kajihara, Biochemistry, 58(2019), 1672-1678, 10.1021/acs.biochem.8b01239
  5. N,N-Dimethylaminoxy carbonyl, a polar protecting group for efficient peptide synthesis. Ryo Okamoto, Emiko Ono, Masayuki Izumi, Yasuhiro Kajihara, Frontiers in Chemistry 7(2019), 173, 10.3389/fchem.2019.00173.


2018

  1. Semisynthesis of Complex-Type Biantennary Oligosaccharides Containing Lactosamine Repeating Units from a Biantennary Oligosaccharide Isolated from a Natural Source. Yuta Maki, Takanori Mima, Ryo Okamoto, Masayuki Izumi, and Yasuhiro Kajihara J. Org. Chem., (2018), 83 , pp 443–451
  2. Recent advances in the chemical synthesis of N-linked glycoproteins.Carlo Unverzagt, Yasuhiro Kajihara, Curr. Opin. Chem. Biol., 2018, 46, 130-137.
  3. Monitoring of glycoprotein quality control system with a series of chemically synthesized homogeneous native and misfolded glycoproteins, Tatsuto Kiuchi, Masayuki Izumi, Yuki Mukogawa, Arisa Shimada, Ryo Okamoto, Akira Seko, Masafumi Sakono, Yoichi Takeda, Yukishige Ito, Yasuhiro Kajihara, J. Am.Chem. Soc. 2018, 140, 17499–17507, DOI: 10.1021/jacs.8b08653.
  4. Effects of N-Glycans on Glycoprotein Folding and Protein Dynamics,Yoko Amazaki, Hien Minh Nguyen, Ryo Okamoto, Yuta Maki, Yasuhiro Kajihara,Glycobiophysics, Editors: Yamaguchi, Yoshiki, Kato, Koichi), 2018, 1-19, ISBN 978-981-13-2158-0


2017

  1. Substrate recognition of glycoprotein folding sensor UGGT analyzed by site-specifically 15N-labeled glycopeptide and small glycopeptide library prepared by parallel native chemical ligation.Masayuki Izumi, ; Rie Kuruma, Ryo Okamoto, Akira Seko, Yukishige Ito, Yasuhiro Kajihara, J. Am. Chem. Soc. (2007), 139, 11421-11426.
  2. Total Synthesis of O-GalNAcylated Antifreeze Glycoprotein using the Switchable Reactivity of Peptidyl-N-pivaloylguanidine. Ryo Orii, Noriko Sakamoto, Daichi Fukami, Sakae Tsuda, Masayuki Izumi, Yasuhiro Kajihara and Ryo Okamoto, Chem Eur. J. (2017), 23, 9253-9257. DOI: 10.1002/chem.201702243
  3. Chemical Synthesis of Glycoproteins with the Specific Installation of Gradient-enriched 15N-labeled Amino Acids for Getting Insights into Glycoprotein Behavior. Nguyen Minh Hien, Masayuki Izumi, Hajime Sato, Ryo Okamoto, and Yasuhiro Kajihara, Chem Eur. J. (2017), 23, 6579-6585 DOI: 10.1002/chem.201606049.


2016

  1. D-Amino Acid Scan of Two Small Proteins. M. Simon, Y. Maki, A. A. Vinogradov, C. Zhang, H. Yu, Y.-S. Lin, Y. Kajihara, B. L. Pentelute, J. Am. Chem. Soc. (2016), 138(37), 12099-12111.
  2. Direct assay for endo-α-mannosidase substrate preference on correctly folded and misfolded model glycoproteins. S. Dedola; M. Izumi; Y. Makimura; A. Seko; A. Kanamori; Y. Takeda; Y. Ito; Y. Kajihara, Carbohydr. Res. (2016), 434, 94-98.
  3. Evaluation of the effect of post-translational modification toward protein structure: Chemical synthesis of glycosyl crambins having either a high mannose-type or a complex-type oligosaccharide. S. Dedola, M. Izumi, Y. Makimura, Y. Ito, Y. Kajihara, Biopolymers (2016), 106(4), 446-452.
  4. Synthesis of misfolded glycoprotein dimers through native chemical ligation of a dimeric peptide thioester. M. Izumi, S. Komaki, R. Okamoto, A. Seko, Y. Takeda, Y. Ito, Y. Kajihara, Org. Biomol.Chem. (2016), 14(25), 6088-6094.
  5. An efficient solid-phase synthesis of peptidyl-N-acetylguanidines for use in native chemical ligation. R. Okamoto, M. Isoe, M. Izumi, Y. Kajihara, J. Peptide Science (2016), 22(5), 343-351.
  6. Semisynthesis of intact complex-type triantennary oligosaccharides from a biantennary oligosaccha-ride isolated from a natural source by selective chemical and enzymatic glycosylation. Y. Maki, R. Okamoto, M. Izumi, T. Murase, Y. Kajihara, J. Am. Chem. Soc. 2016,138,3461-3468.
  7. Synthesis of Glc1Man9-glycoprotein probes by a unique misfolding/enzymatic glucosylation/intentional misfolding approach. M. Izumi, Y. Oka, R. Okamoto, A. Seko, Y. Takeda, Y. Ito, Y. Kajihara. Angew. Chem. Int. Ed. 2016,128,4036-4039.
  8. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity, M. Murakami, T. Kiuchi, M. Nishihara, K. Tezuka, R. Okamoto, M. Izumi Y. Kajihara, Science Advances, DOI: 10.1126/sciadv.1500678.
  9. Evaluation of the effect of post-translational modification toward protein structure: Chemical synthesis of glycosyl crambins having either a high mannose-type or a complex-type oligosaccharide. S. Dedola, M. Izumi, Y, Makimura, Y. Ito, Y. Kajihara, Peptide Science, in press, DOI: 10.1002/bip.22784.
  10. Studies on the Precise Chemical Synthesis of Human Glycoproteins. Y. Kajihara, Bull Chem. Soc. Jap. 2016,89,409-423. DOI:10.1246/bcsj.20150275.


2015

  1. Efficient Synthesis of L-galactose from D-galactose, R. Orii, M. Izumi, Y. Kajihara, R. Okamoto, Ryo, J. Carbohydr. Chem. 2015, 34, 560-566.
  2. Synthesis of D,L-amino acid derivatives bearing a thiol at the β-position and their enzymatic optical resolution. Y. Morishita, T. Kaino, R. Okamoto, M. Izumi, Y. Kajihara, Tetrahedron Letters 2015, 56, 6565-6568.
  3. Chemical Synthesis of Homogeneous Glycoproteins for the Study of Glycoprotein Quality Control System. M. Izumi, S. Dedola, Y. Ito, Y. Kajihara. Israel J. Chem. 2015, 55, 306-314.
  4. Functional analysis of endoplasmic reticulum glucosyltransferase (UGGT): Synthetic chemistry's initiative in glycobiology, Y. Ito, Y. Takeda, A. Seko, M. Izumi, Y. Kajihara. Seminars in Cell & Developmental Biology, 2015, 41, 90-98.


2014

  1. Efficient synthesis of polypeptide-α-thioester by the method combining polypeptide expression and chemical activation for the semi-synthesis of interferon-γ having oligosaccharides. Y. Kajihara, Y. Kanemitsu, M. Nishihara, R. Okamoto, M Izumi.J. Peptide Science, 2014, 20, 958-963.
  2. Decoration of proteins with sugar chains: recent advances in glycoprotein synthesis. R. Okamoto, M. Izumi, Y. Kajihara. Current Opinion in Chemical Biology , 2014, 22, 92-99.
  3. Chemical Synthesis of a Synthetic Analogue of the Sialic Acid-Binding Lectin Siglec-7. M. Izumi, A. Otsuki, M. Nishihara, R. Okamoto, Y. Kajihara. ChemBioChem. 2014, 15, 2503-2507
  4. Semisynthesis of a Post-Translationally Modified Protein by Using Chemical Cleavage and Activation of an Expressed Fusion Polypeptide. R. Okamoto, M. Kimura, T. Ishimizu, M. Izumi, Y. Kajihara. Chem. Eur. J. 2014, 20, 10425-10430.
  5. (Quasi-)Racemic X-ray Structures of Glycosylated and Non-Glycosylated Forms of the Chemokine Ser-CCL1 Prepared by Total Chemical Synthesis. R. Okamoto, K. Mandal, M. R. Sawaya, Y. Kajihara, T.O. Yeates, S. B.H. Kent Angew. Chem. Int. Ed. 2014, 53(20), 5194-5198
  6. Total chemical synthesis and biological activities of glycosylated and non-glycosylated forms of the chemokines CCL1 and Ser-CCL1. R. Okamoto, K. Mandal, M. Ling, A. D. Luster, Y. Kajihara, S. B. H. Kent. Angew. Chem. Int. Ed.2014, 53(20), 5188-5193.
  7. Folding of Synthetic Homogeneous Glycoproteins in the Presence of a Glycoprotein Folding Sensor Enzyme. S. Dedola, M. Izumi, Y. Makimura, A. Seko, A. Kanamori, M. Sakono, Y. Ito, Y. Kajihara, Angew. Chem., Int. Ed. 2014, 53, 2883-2887.
  8. Safe and efficient Boc-SPPS for the synthesis of glycopeptide-α-thioesters. M. Izumi, M. Murakami, R. Okamoto, Y. Kajihara, J. Pept. Sci. 2014, 20, 98-101.
  9. Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active. Y. Takeda, A. Seko, M. Hachisu, S. Daikoku, M. Izumi, A. Koizumi, K. Fujikaw, Y. Kajihara, Y. Ito. Glycobiology, 2014, 24, 344–350.


2013

  1. Misfolded glycoproteins as probes for analysis of folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase. M. Izumi, T. Kiuchi, Y. Ito, Y. Kajihara, Trends in Glycoscience and Glycotechnology, 2013, 25, 1-12.
  2. Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification, C. Unverzagt, Y. Kajihara, Chem. Soc. Rev., 2013, 42, 4408-4420. DOI:10.1039/c3cs35485g.


2012

  1. Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis. Y. Makimura, T. Kiuchi, M. Izumi, S. Dedola, Y. Ito, Y. Kajihara, Carbohydr. Res., 2012, 364, 41-48.
  2. Chemical Synthesis of intentionally Misfolded homogeneous Glycoprotein: a unique approach for the study of glycoprotein quality control. M.Izumi, Y. Makimura, S. Dedola, A. Seko, A. Kanamori, M. Sakono, Y. Ito,Y. Kajihara.J. Am. Chem. Soc.,2012, 134, 7238-7241.
  3. Chemical Synthesis of homogeneous glycosyl-interferon-β that exhibits potent antitumor activity in vivo. I. Sakamoto, K. Tezuka, K.Fukae, K. Ishii,.K. Taduru, M. Maeda, M. Ouchi, K. Yoshida, Y. Nambu, J. Igarashi, N. Hayashi, T. Tsuji, Y. Kajihara, J. Am. Chem. Soc., 2012, 134, 5428-5431. This paper is selected for JACS Spotlights as Chemically Stitching Designer Protein Drugs.
  4. Chemical Synthesis of an Erythropoietin Glycoform Containing a Complex-type Disialyloligosaccharide.M. Murakami, R. Okamoto, M. Izumi, Y. Kajihara, Angew. Chem. Int. Ed 2012, 51, 3567-3572. This paper was selected for inside cover as well as very important paper.
  5. A synthetic approach to a peptide alpha-thioester from unprotected peptide through cleavage and activation of a specific peptide bond by N-acetylguanidine, R. Okamoto, K. Morooka, Y. Kajihara, Angew. Chem. Int. Ed. (2012), 51, 191-196. DOI: 10.1002/anie.201105601.
  6. Homogeneous human complex type oligosaccharides in correctly folded intact glycoproteins: evaluation of the oligosaccharide influence on protein-folding, -stability, and -conformational properties.Y. Kajihara, Y. Tanabe, S. Sasaoka, R. Okamoto, Chem. Eur. J.2012, 18, 5944-5953.


2011

  1. Unique self-anhydride formation in the degradation of Cytidine-5'-mono-phospho-sialic acid (CMP-Neu5Ac) and Cytidine-5'-di-phospho-sialic acid (CDP-Neu5Ac) and its application CMP-sialic acid analogue synthesis, Y. Kajihara, S. Nishigaki, D. Hannzawa, G. Nakanishi, R. Okamoto, N. Yamamoto, Chem. Eur. J. 2011, 17, 7645–7655.
  2. Elucidating the Function of Complex-Type Oligosaccharides by Use of Chemical Synthesis of Homogeneous Glycoproteins. Y. Kajihara, M. Izumi, K. Hirano, T. Murase, D. Macmillan, R. Okamoto. Israel Journal of Chemistry, 2011, 51 917–929.
  3. Semisynthesis of erythropoietin analogue having three oligosaccharides. K. Hirano, M. Izumi, D. Macmillan, K. Tezuka, T. Tsuji, Y. Kajihara. J. Carbohydr. Chem., 2011, 30 306–319


2010

  1. Chemical Synthesis of Glycoproteins having Human Complex Type Oligosaccharide. Y. Kajihara, K. Hirano, D. Macmillan, T. Murase, Peptide Scince., 2010, 50.
  2. Synthesis of Heavily Glycosylated Peptide α-Thioester. K. Hirano, Y. Kajihara, J. Carbohydr. Chem., (2010) 29(2), 84-91.
  3. Synthesis of glycosylated polypeptide chain of inducible costimulator on T cell. T. Murase, Y. Kajihara, Carbohydr. Res., (2010) 345(10), 1324-1330.
  4. Definitive evidence that a single N-glycan among three glycans on inducible costimulator is required for proper protein trafficking and ligand binding. N. Kamei, R. Fukui, Y. Suzuki, Y. Kajihara, M. Kinoshita, K. Kakehi, H. Hojo, K. Tezuka. T. Tsuji, Biochem.Biophys. Res. Commun.,(2010) 391, 557-563.
  5. Expanding the scope of native chemical ligation in glycopeptides synthesis. R.Okamoto, M. Izumi, Y. Kajihara, Int. J. Pept. Res. Ther., (2010) 16, 191-198.
  6. Chemical synthesis of homogeneous glycopeptides and glycoproteins. Y. Kajihara, N. Yamamoto, R. Okamoto, K. Hirano, T. Murase, Chemical Record, (2010) 10, 80-100.
  7. Synthesis of Glycopeptides. Y. Kajihara, R. Okamoto, N. Yamamoto, M. Izumi, Methods in Enzymology, (2010) 478, 503-519 Editor: Minoru Fukuda, Academic Press.
  8. An α2,3-Sialyltransferase from Photobacterium sp. JT-ISH-224 Transfers N-Acetylneuraminic Acid to Both the O-2 and O-3' Hydroxyl Groups of Lactose, Mine, T.; Kajiwara, H.; Murase, T.; Kajihara Y.; Yamamoto, T. J. Carbohydr. Chem., 2010, 29, 51-60.


2009

    Design and Synthesis of Homogeneous Erythropoietin Analogue with Two Human Complex-Type Sialyloligosaccharides: Combined Use of Chemical and Bacterial Protein Expression Methods. K. Hirano, D. Macmillan, K. Tezuka, T. Tsuji, Y. Kajihara Angew. Chem. Int. Ed. (2009), 48,9557-9560. Selected for Inside cover as well as hot paper.
  1. Protein cysteine modifications: (2) Reactivity Specificity and Topics of Medical Chemistry and Protein Engineering. N.Nagahara, T. Matsumura, R. Okamoto, Y. Kajihara, Curr. Med. Chem., (2009), 16, 4490-4501.
  2. Protein cysteine modifications: (1) Medical chemistry for proteomics. N.Nagahara, T. Matsumura, R. Okamoto, Y. Kajihara, Curr. Med. Chem., (2009)16:4419-4444.
  3. Efficient and systematic synthesis of a small glycoconjugate library having human complex type oligosaccharides. T. Murase, T. Tsuji, Y. Kajihara; Carbohydr. Res., 344, (2009), 762-770.
  4. Efficient Substitution Reaction from Cysteine to the Serine Residue of Glycosylated Polypeptide: Repetitive Peptide Segment Ligation Strategy and the Synthesis of Glycosylated Tetracontapeptide Having Acid Labile Sialyl-TN Antigens. R. Okamoto, S. Souma, Y. Kajihara; J. Org. Chem., (2009), 74, 2494-2501.


2008-selected

  1. Uncovering latent ligation site for glycopeptide synthesis. R. Okamoto, Y. Kajihara; Angew. Chem. Int. Ed. (2008), 47(29), 5402-5406.
  2. Efficient Synthesis of MUC4 Sialylglycopeptide through the New Sialylation Using 5-Acetamido-Neuraminamide Donors. R. Okamoto, S. Souma, Y. Kajihara; J. Org. Chem. (2008), 73(9), 3460-3466.
  3. Chemical Synthesis of a Glycoprotein Having an Intact Human Complex-Type Sialyloligosaccharide under the Boc and Fmoc Synthetic Strategies. N. Yamamoto, Y. Tanabe, R. Okamoto, P. E. Dawson, Y. Kajihara; J. Am. Chem. Soc. (2008), 130(2), 501-510.
  4. An approach for a synthesis of asparagine-linked sialylglycopeptides having intact and homogeneous complex-type undecadisialyloligosaccharides. N. Yamamoto, A. Takayanagi, A. Yoshino, T. Sakakibara, Y. Kajihara; Chem. Eur. J. (2007), 13(2), 613-625.
  5. Highly efficient synthesis of sialylglycopeptides overcoming unexpected aspartimide formation during activation of Fmoc-Asn(undecadisialyloligosaccharide)-OH. N. Yamamoto, A. Takayanagi, T. Sakakibara, P. E. Dawson, Y. Kajihara; Tetrahedron Lett. (2006), 47(8), 1341-1346.
  6. An unambiguous assignment method by 2D selective-TOCSY-HSQC and selective-TOCSY-DQFCOSY and structural analysis by selective-TOCSY-NOESY experiments of a biantennary undecasaccharide. H. Sato, Y. Kajihara; Carbohydr. Res. (2005), 340(3), 469-479.
  7. Prompt Chemoenzymatic Synthesis of Diverse Complex Type Oligosaccharides and its Application to the Solid Phase Synthesis of a Glycopeptide Having Asn-linked Sialyl-undeca and Asialo-nonasaccharides. Y. Kajihara, Y. Suzuki, N. Yamamoto, K. Sasaki,T. Sakakibar, R. R. Juneja; Chem. Eur. J. (2004), 10, 971-985.
  8. Convenient synthesis of a glycopeptide analogue having a complex type disialyl-undecasaccharide.N. Yamamoto, T. Sakakibara, Y. Kajihara; Tetrahedron Lett. (2004), 45(16), 3287-3290.
  9. Chemoenzymatic synthesis of diverse asparagine-linked alpha-(2,3)-sialyloligosaccharides. K. Fukae, N. Yamamoto, Y. Hatakeyama, Y. Kajihara; Glycoconjugate J. (2004), 21(5), 243-250.
  10. 2D Selective-TOCSY-DQFCOSY Experiment for Identification of Individual Sugar Components in Oligosaccharides. H. Sato, Y. Kajihara; J. Carbohydr. Chem. (2003), 22, 339-345.
  11. Solid-phase synthesis of sialylglycopeptides through selective esterification of the sialic acid residues of an asn-linked complex-type sialyloligosaccharide. N. Yamamoto, Y. Ohmori, T. Sakakibara, K. Sasaki, L. R. Juneja, Y. Kajihara; Angew. Chem. Int. Ed. (2003), 42, 2537-2540.
  12. Strucural Analysis of Oligosaccharides by Nuclear Magnetic Resonance Methods.Y. Kajihara, H. Sato, Trends in Glycoscience and Glycotechnology (2003), 15, 197-220.
  13. An Approach for the Precise Chemoenzymatic Synthesis of 13C-Labeled Sialyloligosaccharide on an Intact Glycoprotein: A Novel One-Pot [3-13C]-Labeling Method for Sialic Acid Analogues by Control of the Reversible Aldolase Reaction, Enzymatic Synthesis of [3-13C]-NeuAc-a-(2,3)-[U-13C]-Gal-b-(1,4)-GlcNAc-b- Sequence onto Glycoprotein, and its Conformational Analysis by developed NMR Techniques. T. Miyazaki, H. Sato, T. Sakakibara, Y. Kajihara; J. Am. Chem. Soc. (2000), 122, 5678-5694.
  14. Chemoenzymatic Synthesis of the 9-Deoxy-9-fluoro-[3-13C]-NeuAc-a-(2,6)-[U-13C]-Gal-b- Sequence on An Intact Glycoprotein . T. Miyazaki, T. Sakakibara, H. Sato, Y. Kajihara; J. Am. Chem. Soc. (1999), 121, 1411-1412.
  15. Synthesis of Immobilized CMP-sialic acids and Their Enzymatic Transfer with Sialyltransferase. Y. Kajihara, T. Ebata, H. Kodama; Angew. Chem. Int. Ed. (1998), 37, 3166-3169.
  16. A Novel a-2,6 Sialyltransferase: Transfer of Sialic acid to Fucosyl- and Sialyl-trisaccharides. Y. Kajihara, T. Yamamoto, H. Nagae, M. Nakashizuka, T. Sakakibara, I. Terada; J. Org. Chem. (1996), 61, 8632-8635.
  17. Efficient Synthesis of CMP-NeuAc and CMP-(NeuAc a 2-8 NeuAc). Y. Kajihara, K. Koseki, T. Ebata, H. Kodama, H. Matsushita, H. Hashimoto, J. Org. Chem. (1995), 60, 5732-5735.